A major component of the cellular antiviral system is the latent protein kinase PKR, which is activated by binding to either double-stranded RNA (dsRNA) or the cellular PACT protein. Activated PKR phosphorylates the translation initiation factor eIF2, thereby inhibiting viral and cellular protein synthesis and virus replication. To evade the antiviral effects of PKR, many viruses, including influenza A virus, have evolved multiple mechanisms. For influenza A virus, the non-structural (NS1A) protein plays a major role in blocking activation of PKR during virus infection. The mechanism by which the NS1A protein inhibits PKR activation in infected cells has not been established. In the present study, we first carried out a series of in vitro experiments to determine whether the NS1A protein could utilize a common mechanism to inhibit PKR activation by both PACT and dsRNA, despite their different modes of activation. We demonstrated that the direct binding of the NS1A protein to the N-terminal 230 amino acid region of PKR can serve as such a common mechanism and that this binding does not require the RNA-binding activity of the NS1A protein. The lack of requirement for NS1A RNA-binding activity for the inhibition of PKR activation in vivo was established by two approaches. First, we showed that an NS1A protein lacking RNA-binding activity, like the wild-type (wt) protein, blocked PKR activation by PACT in vivo, as well as the downstream effects of PKR activation in cells, namely, eIF2 phosphorylation and apoptosis. In addition, we demonstrated that PKR activation is inhibited in cells infected with a recombinant influenza A virus expressing NS1A mutant protein that cannot bind RNA, as is the case in cells infected with wild-type influenza A virus.
Studies have shown that ␣-synuclein (␣-syn) deposited in Lewy bodies in brain tissue from patients with Parkinson disease (PD) is extensively phosphorylated at Ser-129. We used recombinant Adeno-associated virus (rAAV) to overexpress human wild-type (wt) ␣-syn and two human ␣-syn mutants with site-directed replacement of Ser-129 to alanine (S129A) or to aspartate (S129D) in the nigrostriatal tract of the rat to investigate the effect of Ser-129 phosphorylation state on dopaminergic neuron pathology. Rats were injected with rAAV2/5 vectors in the substantia nigra pars compacta (SNc) on one side of the brain; the other side remained as a nontransduced control. The level of human wt or mutant ␣-syn expressed on the injected side was about four times the endogenous rat ␣-syn. There was a significant reduction of dopaminergic neurons in the SNc and dopamine (DA) and tyrosine hydroxylase (TH) levels in the striatum of all S129A-treated rats as early as 4 wk postinjection. Nigral DA pathology occurred more slowly in the wt-injected animals, but by 26 wk the wt ␣-syn group lost nigral TH neurons equivalent to the mutated S129A group at 8 wk. In stark contrast, we did not observe any pathological changes in S129D-treated animals. Therefore, the nonphosphorylated form of S129 exacerbates ␣-syn-induced nigral pathology, whereas Ser-129 phosphorylation eliminates ␣-syn-induced nigrostriatal degeneration. This suggests possible new therapeutic targets for Parkinson Disease.
It is not known how influenza A viruses, important human pathogens, counter PKR activation, a crucial host antiviral response. Here we elucidate this mechanism. We show that the direct binding of PKR to the NS1 protein in vitro that results in inhibition of PKR activation requires the NS1 123-127 amino acid sequence. To establish whether such direct binding of PKR to the NS1 protein is responsible for inhibiting PKR activation in infected cells, we generated recombinant influenza A/Udorn/72 viruses expressing NS1 proteins in which amino acids 123/124 or 126/127 are changed to alanines. In cells infected with these mutant viruses, PKR is activated, eIF-2alpha is phosphorylated and viral protein synthesis is inhibited, indicating that direct binding of PKR to the 123-127 sequence of the NS1 protein is necessary and sufficient to block PKR activation in influenza A virus-infected cells. Unexpectedly, the 123/124 mutant virus is not attenuated because reduced viral protein synthesis is offset by enhanced viral RNA synthesis at very early times of infection. These early viral RNAs include those synthesized predominantly at later times during wild-type virus infection, demonstrating that wild-type temporal regulation of viral RNA synthesis is absent in 123/124 virus-infected cells. Enhanced early viral RNA synthesis after 123/124 virus infection also occurs in mouse PKR-/- cells, demonstrating that PKR activation and deregulation of the time course of viral RNA synthesis are not coupled. These results indicate that the 123/124 site of the NS1A protein most likely functionally interacts with the viral polymerase to mediate temporal regulation of viral RNA synthesis. This interaction would occur in the nucleus, whereas PKR would bind to NS1A proteins in the cytoplasm prior to their import into the nucleus.
Two small-interfering RNAs (siRNAs) targeting alpha-synuclein (alpha-syn) and three control siRNAs were cloned in an adeno-associated virus (AAV) vector and unilaterally injected into rat substantia nigra pars compacta (SNc). Reduction of alpha-syn resulted in a rapid (4 week) reduction in the number of tyrosine hydroxylase (TH) positive cells and striatal dopamine (DA) on the injected side. The level of neurodegeneration induced by the different siRNAs correlated with their ability to downregulate alpha-syn protein and mRNA in tissue culture and in vivo. Examination of various SNc neuronal markers indicated that neurodegeneration was due to cell loss and not just downregulation of DA synthesis. Reduction of alpha-syn also resulted in a pronounced amphetamine induced behavioral asymmetry consistent with the level of neurodegeneration. In contrast, none of the three control siRNAs, which targeted genes not normally expressed in SNc, showed evidence of neurodegeneration or behavioral asymmetry, even at longer survival times. Moreover, co-expression of both rat alpha-syn and alpha-syn siRNA partially reversed the neurodegenerative and behavioral effects of alpha-syn siRNA alone. Our data show that alpha-syn plays an important role in the rat SNc and suggest that both up- and downregulation of wild-type alpha-syn expression increase the risk of nigrostriatal pathology.
antiviral mechanism ͉ autoinhibition ͉ NMR ͉ peptide activator ͉ protein kinase
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.