Rolling-bearing faults can be effectively reflected using time-frequency characteristics. However, there are inevitable interference and redundancy components in the conventional time-frequency characteristics. Therefore, it is critical to extract the sensitive parameters that reflect the rolling-bearing state from the time-frequency characteristics to accurately classify rolling-bearing faults. Thus, a new tensor manifold method is proposed. First, we apply the Hilbert-Huang transform (HHT) to rolling-bearing vibration signals to obtain the HHT time-frequency spectrum, which can be transformed into the HHT time-frequency energy histogram. Then, the tensor manifold time-frequency energy histogram is extracted from the traditional HHT time-frequency spectrum using the tensor manifold method. Five time-frequency characteristic parameters are defined to quantitatively depict the failure characteristics. Finally, the tensor manifold time-frequency characteristic parameters and probabilistic neural network (PNN) are combined to effectively classify the rolling-bearing failure samples. Engineering data are used to validate the proposed method. Compared with traditional HHT time-frequency characteristic parameters, the information redundancy of the time-frequency characteristics is greatly reduced using the tensor manifold time-frequency characteristic parameters and different rolling-bearing fault states are more effectively distinguished when combined with the PNN.
This paper first attempts to solve the transient heat conduction problem by combining the recently proposed local knot method (LKM) with the dual reciprocity method (DRM). Firstly, the temporal derivative is discretized by a finite difference scheme, and thus the governing equation of transient heat transfer is transformed into a non-homogeneous modified Helmholtz equation. Secondly, the solution of the non-homogeneous modified Helmholtz equation is decomposed into a particular solution and a homogeneous solution. And then, the DRM and LKM are used to solve the particular solution of the non-homogeneous equation and the homogeneous solution of the modified Helmholtz equation, respectively. The LKM is a recently proposed local radial basis function collocation method with the merits of being simple, accurate, and free of mesh and integration. Compared with the traditional domain-type and boundary-type schemes, the present coupling algorithm could be treated as a really good alternative for the analysis of transient heat conduction on high-dimensional and complicated domains. Numerical experiments, including two-and three-dimensional heat transfer models, demonstrated the effectiveness and accuracy of the new methodology.
Relaxation of control over the upstream business of the petroleum industry in China is discussed. The authors suggest that a basic institutional preparation should be made before relaxing control over the upstream business, and that the institutional preparation includes at least four parts: 1) setting up the admission standards, 2) perfecting the management system of mining rights, 3) reforming the royalty and taxation system for oil and gas resources, and 4) improving the supervision and management system. Stressing the institutional preparation before relaxation of control does not mean that China could not relax control over the upstream business until the management systems are perfected, but the authors suggest that China could establish a necessary system for relaxation of control and to improve it with future practice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.