People preferentially attend to external stimuli that are related to themselves compared with others. Whether a similar self-reference bias applies to internal representations, such as those maintained in working memory (WM), is presently unknown. We tested this possibility in four experiments, in which participants were first trained to associate social labels (self, friend, stranger) with arbitrary colors and then performed a delayed match-to-sample spatial WM task on color locations. Participants consistently responded fastest to WM probes at locations of self-associated colors (Experiments 1–4). This self-bias was driven not by differential exogenous attention during encoding or retrieval (Experiments 1 and 2) but by internal attentional prioritization of self-related representations during WM maintenance (Experiment 3). Moreover, self-prioritization in WM was nonstrategic, as this bias persisted even under conditions in which it hurt WM performance. These findings document an automatic prioritization of self-referential items in WM, which may form the basis of some egocentric biases in decision making.
Humans show a pervasive bias for processing self-over other-related information, including in working memory (WM), where people prioritize the maintenance of self-(over other-) associated cues. To elucidate the neural mechanisms underlying this self-bias, we paired a self-versus other-associated spatial WM task with fMRI and transcranial direct current stimulation (tDCS) of human participants of both sexes. Maintaining self-(over other-) associated cues resulted in enhanced activity in classic WM regions (frontoparietal cortex), and in superior multivoxel pattern decoding of the cue locations from visual cortex. Moreover, ventromedial PFC (VMPFC) displayed enhanced functional connectivity with WM regions during maintenance of self-associated cues, which predicted individuals' behavioral self-prioritization effects. In a follow-up tDCS experiment, we targeted VMPFC with excitatory (anodal), inhibitory (cathodal), or sham tDCS. Cathodal tDCS eliminated the self-prioritization effect. These findings provide strong converging evidence for a causal role of VMPFC in driving self-prioritization effects in WM and provide a unique window into the interaction between social, self-referential processing and high-level cognitive control processes.
We investigated if emotion regulation can be improved through self-regulation training on non-emotional brain regions, as well as how to change the brain networks implicated in this process. During the training period, the participants were instructed to up-regulate their right dorsolateral prefrontal cortex (rDLPFC) activity according to real-time functional near-infrared spectroscopy (fNIRS) neurofeedback signals, and there was no emotional element. The results showed that the training significantly increased emotion regulation, resting-state functional connectivity (rsFC) within the emotion regulation network (ERN) and frontoparietal network (FPN), and rsFC between the ERN and amygdala; however, training did not influence the rsFC between the FPN and the amygdala. However, self-regulation training on rDLPFC significantly improved emotion regulation and generally increased the rsFCs within the networks; the rsFC between the ERN and amygdala was also selectively increased. The present study also described a safe approach that may improve emotion regulation through self-regulation training on non-emotional brain regions.
Self-esteem is an affective, self-evaluation of oneself and has a significant effect on mental and behavioral health. Although research has focused on the neural substrates of self-esteem, little is known about the spontaneous brain activity that is associated with trait self-esteem (TSE) during the resting state. In this study, we used the resting-state functional magnetic resonance imaging (fMRI) signal of the amplitude of low-frequency fluctuations (ALFFs) and resting state functional connectivity (RSFC) to identify TSE-related regions and networks. We found that a higher level of TSE was associated with higher ALFFs in the left ventral medial prefrontal cortex (vmPFC) and lower ALFFs in the left cuneus/lingual gyrus and right lingual gyrus. RSFC analyses revealed that the strengths of functional connectivity between the left vmPFC and bilateral hippocampus were positively correlated with TSE; however, the connections between the left vmPFC and right inferior frontal gyrus and posterior superior temporal sulcus were negatively associated with TSE. Furthermore, the strengths of functional connectivity between the left cuneus/lingual gyrus and right dorsolateral prefrontal cortex and anterior cingulate cortex were positively related to TSE. These findings indicate that TSE is linked to core regions in the default mode network and social cognition network, which is involved in self-referential processing, autobiographical memory and social cognition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.