Reducing the dimension of the hyperspectral image data can directly reduce the redundancy of the data, thus improving the accuracy of hyperspectral image classification. In this paper, the deep belief network algorithm in the theory of deep learning is introduced to extract the in-depth features of the imaging spectral image data. Firstly, the original data is mapped to feature space by unsupervised learning methods through the Restricted Boltzmann Machine (RBM). Then, a deep belief network will be formed by superimposed multiple Restricted Boltzmann Machines and training the model parameters by using the greedy algorithm layer by layer. At the same time, as the objective of data dimensionality reduction is achieved, the underground feature construction of the original data will be formed. The final step is to connect the depth features of the output to the Softmax regression classifier to complete the fine-tuning (FT) of the model and the final classification. Experiments using imaging spectral data showing the in-depth features extracted by the profound belief network algorithm have better robustness and separability. It can significantly improve the classification accuracy and has a good application prospect in hyperspectral image information extraction.
Improvements in hyperspectral image technology, diversification methods, and cost reductions have increased the convenience of hyperspectral data acquisitions. However, because of their multiband and multiredundant characteristics, hyperspectral data processing is still complex. Two feature extraction algorithms, the autoencoder (AE) and restricted Boltzmann machine (RBM), were used to optimize the classification model parameters. The optimal classification model was obtained by comparing a stacked autoencoder (SAE) and a deep belief network (DBN). Finally, the SAE was further optimized by adding sparse representation constraints and GPU parallel computation to improve classification accuracy and speed. The research results show that the SAE enhanced by deep learning is superior to the traditional feature extraction algorithm. The optimal classification model based on deep learning, namely, the stacked sparse autoencoder, achieved 93.41% and 94.92% classification accuracy using two experimental datasets. The use of parallel computing increased the model’s training speed by more than seven times, solving the model’s lengthy training time limitation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.