Withaferin A (WA), a major bioactive component of the Indian herb Withania somnifera, induces cell death (apoptosis/necrosis) in multiple types of tumor cells, but the molecular mechanism underlying this cytotoxicity remains elusive. We report here that 2 μM WA induced cell death selectively in androgen-insensitive PC-3 and DU-145 prostate adenocarcinoma cells, whereas its toxicity was less severe in androgen-sensitive LNCaP prostate adenocarcinoma cells and normal human fibroblasts (TIG-1 and KD). WA also killed PC-3 cells in spheroid-forming medium. DNA microarray analysis revealed that WA significantly increased mRNA levels of c-Fos and 11 heat-shock proteins (HSPs) in PC-3 and DU-145, but not in LNCaP and TIG-1. Western analysis revealed increased expression of c-Fos and reduced expression of the anti-apoptotic protein c-FLIP(L). Expression of HSPs such as HSPA6 and Hsp70 was conspicuously elevated; however, because siRNA-mediated depletion of HSF-1, an HSP-inducing transcription factor, reduced PC-3 cell viability, it is likely that these heat-shock genes were involved in protecting against cell death. Moreover, WA induced generation of reactive oxygen species (ROS) in PC-3 and DU-145, but not in normal fibroblasts. Immunocytochemistry and immuno-electron microscopy revealed that WA disrupted the vimentin cytoskeleton, possibly inducing the ROS generation, c-Fos expression and c-FLIP(L) suppression. These observations suggest that multiple events followed by disruption of the vimentin cytoskeleton play pivotal roles in WA-mediated cell death.
Gefitinib (Iressa) is an inhibitor of the epidermal growth factor receptor (EGFR) that has shown promising activity in the treatment of patients with non-small cell lung cancer (NSCLC). However, adverse side effects of gefitinib treatment, such as respiratory dysfunction, have limited the therapeutic benefit of this targeting strategy. The present results show that this adverse effect can be attributed to the inhibition of the novel gefitinib target GAK (Cyclin G-associated kinase), which is as potently inhibited by the drug as the tyrosine kinase activity of EGFR. Knockout mice expressing the kinase-dead form of GAK (GAK-kd) died within 30 min after birth primarily due to respiratory dysfunction. Immunohistochemical analysis revealed that surfactant protein A (SP-A) was abundant within alveolar spaces in GAK-kd+/+ mice but not in GAK-kd-/- pups. E-cadherin and phosphorylated EGFR signals were also abnormal, suggesting the presence of flat alveolar cells with thin junctions. These results suggest that inhibition of GAK by gefitinib may cause pulmonary alveolar dysfunction, and the present study may help prevent side effects associated with gefitinib therapy in NSCLC patients.
Abstract. Unlike other cyclins that positively regulate the cell cycle, cyclin G2 (CCNG2) regulates cell proliferation as a tumor suppressor gene. A decreased CCNG2 expression serves as a marker for poor prognosis in several types of cancer. The aim of the present study was to clarify the correlation of CCNG2 expression with overall survival and histopathological factors in pancreatic cancer patients. This retrospective analysis included data from 36 consecutive patients who underwent complete surgical resection for pancreatic cancer and did not undergo any preoperative therapies. The association between prognoses and the expression of CCNG2 was assessed using immunohistochemical staining. Multivariate analysis identified that the expression of CCNG2 is an independent prognostic factor. In addition, the Kaplan-Meier curve for overall survival revealed that decreased expression of CCNG2 was a consistent indicator of poor prognosis in pancreatic cancer patients (P=0.0198). A decreased CCNG2 expression significantly correlated with venous invasion in tumor specimens and the tumor invasion depth. In conclusion, CCNG2 expression inversely reflected cancer progression and may be a novel, independent prognostic marker in pancreatic cancer.
Radiation therapy (RT) is useful for selectively killing cancer cells. However, because high levels of ionizing radiation (IR) are toxic to normal cells, RT cannot be applied repeatedly to cancer patients. Therefore, novel chemicals that enhance the efficacy of chemoradiotherapy (CRT) would be valuable. Here, we report that ELAS1, a peptide corresponding to the protein phosphatase 2A (PP2A) association domain of cyclin G1 (CycG1), can enhance the efficacy of CRT. ELAS1 interacts with the PP2A B'γ-subunit and competitively inhibits association with CycG1, thereby preventing the PP2A holoenzyme from dephosphorylating target proteins, Mdm2 (pT218) and p53 (pS46), following DNA double-strand break (DSB) insults. Doxycycline (Dox)-induced overexpression of Myc-ELAS1 caused γ-irradiation to induce apoptosis in human osteosarcoma (U2OS) cells, at 1/10th the effective dosage of γ-irradiation required for apoptosis in Myc-vector-expressing cells; ELAS1 peptide incorporation into U2OS cells also showed similar apoptotic effects. Moreover, administration of DSB-inducing chemicals, camptothecin (CPT) or irinotecan, to Myc-ELAS1-expressing U2OS cells also induced efficient apoptosis with only 1/100th (CPT) or 1/5th (irinotecan) of the amounts of drugs required for this effect in Myc-vector-expressing cells. Taken together, ELAS1 may be important for the design of ELAS1-mimetic compounds to improve CRT efficacy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.