The construction of highly active and stable non-noble-metal electrocatalysts for hydrogen and oxygen evolution reactions is a major challenge for overall water splitting. Herein, we report a novel hybrid nanostructure with CoP nanoparticles (NPs) embedded in a N-doped carbon nanotube hollow polyhedron (NCNHP) through a pyrolysis-oxidation-phosphidation strategy derived from core-shell ZIF-8@ZIF-67. Benefiting from the synergistic effects between highly active CoP NPs and NCNHP, the CoP/NCNHP hybrid exhibited outstanding bifunctional electrocatalytic performances. When the CoP/NCNHP was employed as both the anode and cathode for overall water splitting, a potential as low as 1.64 V was needed to achieve the current density of 10 mA·cm, and it still exhibited superior activity after continuously working for 36 h with nearly negligible decay in potential. Density functional theory calculations indicated that the electron transfer from NCNHP to CoP could increase the electronic states of the Co d-orbital around the Fermi level, which could increase the binding strength with H and therefore improve the electrocatalytic performance. The strong stability is attributed to high oxidation resistance of the CoP surface protected by the NCNHP.
We develop an N-coordination strategy to design a robust CO reduction reaction (CORR) electrocatalyst with atomically dispersed Co-N site anchored on polymer-derived hollow N-doped porous carbon spheres. Our catalyst exhibits high selectivity for CORR with CO Faradaic efficiency (FE) above 90% over a wide potential range from -0.57 to -0.88 V (the FE exceeded 99% at -0.73 and -0.79 V). The CO current density and FE remained nearly unchanged after electrolyzing 10 h, revealing remarkable stability. Experiments and density functional theory calculations demonstrate single-atom Co-N site is the dominating active center simultaneously for CO activation, the rapid formation of key intermediate COOH* as well as the desorption of CO.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.