Face recognition is one of the popular areas of research in the field of computer vision. It is mainly used for identification and security system. One of the major challenges in face recognition is identification under numerous illumination environments by changing the direction of light or modifying the lighting magnitude. Exacting illumination invariant features is an effective approach to solve this problem. Conventional face recognition algorithms based on nonsubsampled contourlet transform (NSCT) and bionic mode are not capable enough to recognize the similar faces with great accuracy. Hence, in this paper, an attempt is made to propose an enhanced cerebellum-basal ganglia mechanism (CBGM) for face recognition. The integral projection and geometric feature assortment method are used to acquire the facial image features. The cognition model is deployed which is based on the cerebellum-basal ganglia mechanism and is applied for extraction of features from the face image to achieve greater accuracy for recognition of face images. The experimental results reveal that the enhanced CBGM algorithm can effectively recognize face images with greater accuracy. The recognition rate of 100 AR face images has been found to be 96.9%. The high recognition accuracy rate has been achieved by the proposed CBGM technique.
At present, with the development of science and technology, a lot of new technologies have been developed, which has brought great convenience to people's lives. Face recognition technology is a very innovative technology. Therefore, in the field of computer science, professionals have been studying the related technologies. And the technology has been applied in the fields of industry and biology. In this paper, a deep analysis of the theory of face recognition was made. Through the gabor wavelet and memetic ecological algorithm, the technology was further studied.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.