Birth weight variation is influenced by fetal and maternal genetic and non-genetic factors, and has been reproducibly associated with future cardio-metabolic health outcomes. In expanded genome-wide association analyses of own birth weight (n=321,223) and offspring birth weight (n=230,069 mothers), we identified 190 independent association signals (129 novel). We used structural equation modelling to decompose the contributions of direct fetal and indirect maternal genetic effects, and then applied Mendelian randomization to illuminate causal pathways. For example, both indirect maternal and direct fetal genetic effects drive the observational relationship between lower birth weight and higher later blood pressure: maternal blood pressure-raising alleles reduce offspring birth weight, but only direct fetal effects of those alleles, once inherited, increase later offspring blood pressure. Using maternal birth weight-lowering genotypes to proxy for an adverse intrauterine environment provided no evidence that it causally raises offspring blood pressure, indicating that the inverse birth weight-blood pressure association is attributable to genetic effects, and not to intrauterine programming.
Birth weight (BW) variation is influenced by fetal and maternal genetic and non-genetic factors, and has been reproducibly associated with future cardio-metabolic health outcomes. These associations have been proposed to reflect the lifelong consequences of an adverse intrauterine environment. In earlier work, we demonstrated that much of the negative correlation between BW and adult cardio-metabolic traits could instead be attributable to shared genetic effects. However, that work and other previous studies did not systematically distinguish the direct effects of an individual’s own genotype on BW and subsequent disease risk from indirect effects of their mother’s correlated genotype, mediated by the intrauterine environment. Here, we describe expanded genome-wide association analyses of own BW (n=321,223) and offspring BW (n=230,069 mothers), which identified 278 independent association signals influencing BW (214 novel). We used structural equation modelling to decompose the contributions of direct fetal and indirect maternal genetic influences on BW, implicating fetal- and maternal-specific mechanisms. We used Mendelian randomization to explore the causal relationships between factors influencing BW through fetal or maternal routes, for example, glycemic traits and blood pressure. Direct fetal genotype effects dominate the shared genetic contribution to the association between lower BW and higher type 2 diabetes risk, whereas the relationship between lower BW and higher later blood pressure (BP) is driven by a combination of indirect maternal and direct fetal genetic effects: indirect effects of maternal BP-raising genotypes act to reduce offspring BW, but only direct fetal genotype effects (once inherited) increase the offspring’s later BP. Instrumental variable analysis using maternal BW-lowering genotypes to proxy for an adverse intrauterine environment provided no evidence that it causally raises offspring BP. In successfully separating fetal from maternal genetic effects, this work represents an important advance in genetic studies of perinatal outcomes, and shows that the association between lower BW and higher adult BP is attributable to genetic effects, and not to intrauterine programming.
Epidemiologic studies support that at least part of the risk of chronic diseases in childhood and even adulthood may have an in utero origin, and the placenta is a key organ that plays a pivotal role in fetal growth and development. The transcriptomes of 159 human placenta tissues were profiled by genome-wide RNA sequencing (Illumina High-Seq 2500), and linked to fetal genotypes assessed by a high density single nucleotide polymorphism (SNP) genotyping array (Illumina MegaEx). Expression quantitative trait loci (eQTLs) across all annotated transcripts were mapped and examined for enrichment for disease susceptibility loci annotated in the genome-wide association studies (GWAS) catalog. We discovered 3218 cis- and 35 trans-eQTLs at ≤10% false discovery rate in human placentas. Among the 16 439 known disease loci of genome-wide significance, 835 were placental eSNPs (enrichment fold = 1.68, P = 7.41e-42). Stronger effect sizes were observed between GWAS SNPs and gene expression in placentas than what has been reported in other tissues, such as the correlation between asthma risk allele, rs7216389-T and Gasdermin-B (GSDMB) in placenta (r2=27%) versus lung (r2=6%). Finally, our results suggest the placental eQTLs may mediate the function of GWAS loci on postnatal disease susceptibility. Results suggest that transcripts in placenta are under tight genetic control, and that placental gene networks may influence postnatal risk of multiple human diseases lending support for the Developmental Origins of Health and Disease.
The duration of pregnancy is influenced by fetal and maternal genetic and non-genetic factors. Here we report a fetal genome-wide association meta-analysis of gestational duration, and early preterm, preterm, and postterm birth in 84,689 infants. One locus on chromosome 2q13 is associated with gestational duration; the association is replicated in 9,291 additional infants (combined P = 3.96 × 10 −14 ). Analysis of 15,588 mother-child pairs shows that the association is driven by fetal rather than maternal genotype. Functional experiments show that the lead SNP, rs7594852, alters the binding of the HIC1 transcriptional repressor. Genes at the locus include several interleukin 1 family members with roles in pro-inflammatory pathways that are central to the process of parturition. Further understanding of the underlying mechanisms will be of great public health importance, since giving birth either before or after the window of term gestation is associated with increased morbidity and mortality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.