Electrochemical conversion of CO
2
to alcohols is one of the most challenging methods of conversion and storage of electrical energy in the form of high-energy fuels. The challenge lies in the catalyst design to enable its real-life implementation. Herein, we demonstrate the synthesis and characterization of a cobalt(III) triphenylphosphine corrole complex, which contains three polyethylene glycol residues attached at the
meso
-phenyl groups. Electron-donation and therefore reduction of the cobalt from cobalt(III) to cobalt(I) is accompanied by removal of the axial ligand, thus resulting in a square-planar cobalt(I) complex. The cobalt(I) as an electron-rich supernucleophilic d
8
-configurated metal centre, where two electrons occupy and fill up the antibonding d
z
2
orbital. This orbital possesses high affinity towards electrophiles, allowing for such electronically configurated metals reactions with carbon dioxide. Herein, we report the potential dependent heterogeneous electroreduction of CO
2
to ethanol or methanol of an immobilized cobalt A
3
-corrole catalyst system. In moderately acidic aqueous medium (pH = 6.0), the cobalt corrole modified carbon paper electrode exhibits a Faradaic Efficiency (FE%) of 48 % towards ethanol production.
The controlled electrochemical reduction of carbon dioxide to value added chemicals is an important strategy in terms of renewable energy technologies. Therefore, the development of efficient and stable catalysts in an aqueous environment is of great importance. In this context, we focused on synthesizing and studying a molecular MnIII‐corrole complex, which is modified on the three meso‐positions with polyethylene glycol moieties for direct and selective production of acetic acid from CO2. Electrochemical reduction of MnIII leads to an electroactive MnII species, which binds CO2 and stabilizes the reduced intermediates. This catalyst allows to electrochemically reduce CO2 to acetic acid in a moderate acidic aqueous medium (pH 6) with a selectivity of 63 % and a turn over frequency (TOF) of 8.25 h−1, when immobilized on a carbon paper (CP) electrode. In terms of high selectivity towards acetate, we propose the formation and reduction of an oxalate type intermediate, stabilized at the MnIII‐corrole center.
The controlled electrochemical reduction of carbon dioxide to value added chemicals is an important strategy in terms of renewable energy technologies. Therefore, the development of efficient and stable catalysts in an aqueous environment is of great importance. In this context, we focused on synthesizing and studying a molecular MnIII‐corrole complex, which is modified on the three meso‐positions with polyethylene glycol moieties for direct and selective production of acetic acid from CO2. Electrochemical reduction of MnIII leads to an electroactive MnII species, which binds CO2 and stabilizes the reduced intermediates. This catalyst allows to electrochemically reduce CO2 to acetic acid in a moderate acidic aqueous medium (pH 6) with a selectivity of 63 % and a turn over frequency (TOF) of 8.25 h−1, when immobilized on a carbon paper (CP) electrode. In terms of high selectivity towards acetate, we propose the formation and reduction of an oxalate type intermediate, stabilized at the MnIII‐corrole center.
An immediate challenge for chemists is to devise different methods to trap chemical energy using light by reduction of carbon dioxide to a transportable fuel. To reach this goal the major obstacle lies in finding a suitable material that is abundant and possesses catalytic power to effect such reduction reaction and perform this reduction reaction without using any external photosensitizer. Here we report for the first time a softoxometalate based on a {[K 6.5 Cu-(OH) 8.5 (H 2 O) 7.5 ] 0.5 [K 3 PW 12 O 40 ]} metal oxide framework which is stable in reaction conditions that effectively performs photochemical CO 2 reduction reaction in water with a very high turnover number of 613 and TOF of 47.15 h −1 . We observe that during this reaction water gets oxidized to oxygen, while the electrons released directly go to CO 2 reducing it to formic acid. A detailed account of the characterization of the catalyst along with that of products of this reaction is reported.
AZ r-based metal-organic framework has been synthesized and employed as ac atalystf or photochemical carbon dioxide reduction coupled with water oxidation. The catalysts hows significant carbon dioxide reduction property with concomitant water oxidation. The catalyst has broad visible light as well as UV light absorption property,w hich is furtherc onfirmed from electronic absorption spectroscopy. Formic acid was the only reduced product from carbondiox-ide with at urn-over frequency (TOF)o f0 .69 h À1 in addition to oxygen, which was produced with aT OF of 0.54 h À1 .N o externalp hotosensitizer is used and the ligand itself acts as the light harvester.T he efficient and selective photochemical carbond ioxide reductiont of ormic acid with concomitant watero xidation usingZ r-based MOF as catalyst is thus demonstrated here.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.