A crosslinked membrane based on renewable, degradable and environmentally friendly soybean protein isolate was formed by solution casting method. A series of gel polymer electrolytes were prepared with the crosslinked membranes saturated with 1 mol·L−1 Li2SO4. The solid-state electric double-layer capacitors were fabricated with the prepared gel polymer electrolytes and activated carbon electrodes. The optimized solid-state supercapacitor delivered a single electrode specific capacitance of 115.17 F·g−1 at a current density of 1.0 A·g−1, which was higher than the supercapacitor assembled with the commercial separator in 1 mol·L−1 Li2SO4. The solid-state supercapacitor exhibited an outstanding cycling stability, indicating that the gel polymer electrolyte based on the crosslinked soybean protein isolate membrane could be a promising separator for a solid-state supercapacitor.
Supercapacitors are a very active research topic. However, liquid electrolytes present several drawbacks on security and packaging. Herein, a gel polymer electrolyte was prepared based on crosslinked renewable and environmentally friendly soybean protein isolate (SPI) and hydroxyethyl cellulose (HEC) with 1.0 mol L−1 Li2SO4. Highly hydrophilic SPI and HEC guaranteed a high ionic conductivity of 8.40 × 10−3 S cm−1. The fabricated solid-state supercapacitor with prepared gel polymer electrolyte exhibited a good electrochemical performance, that is, a high single electrode gravimetric capacitance of 91.79 F g−1 and an energy density of 7.17 W h kg−1 at a current density of 5.0 A g−1. The fabricated supercapacitor exhibited a flexible performance under bending condition superior to liquid supercapacitor and similar electrochemical performance at various bending angles. In addition, it was proved by an almost 100% cycling retention and a coulombic efficiency over 5000 charge–discharge cycles. For comparison, supercapacitors assembled with commercial aqueous PP/PE separator, pure SPI membrane, and crosslinked SPI membrane were also characterized. The obtained gel polymer electrolyte based on crosslinked SPI and HEC may be useful for the design of advanced polymer electrolytes for energy devices.
The low energy density of supercapacitors, especially supercapacitors based on aqueous electrolytes, is the main factor limiting their application, and the energy density is closely related to the operating potential window of the supercapacitor. The polymer electrolyte is the main contributor to the safe operation and good ion conductivity of the supercapacitor. In this study, a crosslinked quaternized poly(arylene ether sulfone) (PAES) membrane was prepared via crosslinking during membrane formation with a thermal‐only treatment and applied in an electric double‐layer capacitor (EDLC). The pre‐prepared PAES membrane formed a polymer electrolyte with 1 mol/L Li2SO4 and was then fabricated into an EDLC single cell. The properties of both the membrane and ELDC were investigated. The preferred cPAES‐N‐0.2 polymer electrolyte showed an ionic conductivity of 1.18 mS/cm. The optimized EDLC exhibited a single‐electrode gravimetric capacitance of 104.92 F/g at a current density of 1.0 A/g and a high operating potential window (1.5 V); it, thereby, achieved a high energy density of 8.20 W h/kg. The EDLC also exhibited excellent cycling properties over 3000 charge–discharge cycles. The crosslinked structures promoted the tensile strength and thermal stability of the PAES membranes; this was accompanied by a slight decrease in the ionic conductivity. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019, 136, 47759.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.