Experiments were conducted to evaluate the effect of free-range raising systems on growth performance, carcass yield, and meat quality of slow-growing chickens. Slow-growing female chickens, Gushi chickens, were selected as the experimental birds. Two hundred 1-d-old female chicks were raised in a pen for 35 d. On d 36, ninety healthy birds, with similar BW (353.7+/-32.1g), were selected and randomly assigned to 2 treatments (indoor treatment and free-range treatment, P>0.05). Each treatment was represented by 3 groups containing 15 birds (45 birds per treatment). During the indoor treatment, the chickens were raised in floor pens in a conventional poultry research house (7 birds/m2). In the free-range treatment, the chickens were housed in a similar indoor house (7 birds/m2); in addition, they also had a free-range grass paddock (1 bird/m2). All birds were provided with the same starter and finisher diets and were raised for 112 d. Results showed that the BW and weight gain of the chickens in the free-range treatment were much lower than that of the chickens in the indoor floor treatments (P<0.05). There was no effect of the free-range raising system on eviscerated carcass, breast, thigh, and wing yield (P>0.05). However, the abdominal fat yield and tibia strength (P<0.05) significantly declined. The nutrient composition (water, protein, and fat), water-holding capacity, shear force, and pH of the muscle were largely unaffected (P>0.05) by the free-range raising system. The data indicated that the free-range raising system could significantly reduce growth performance, abdominal fat, and tibia strength, but with no effect on carcass traits and meat quality in slow-growing chickens.
The purpose of this study was to investigate the effects of Bacillus subtilis on growth performance, intestinal morphology, and cecal microbial composition of broilers. A total of 270 healthy one-day-old Arbor Acres male broiler chicks were randomly divided into 3 dietary treatment groups, with 6 replicates per group and 15 chickens per replicate. The dietary treatment groups were as follows: 1) basal diet, negative control group; 2) basal diet +250 g/t of zinc bacitracin, positive control group; and 3) basal diet +750 g/t of B. subtilis , B. subtilis group. Results of this experiment showed that compared with the negative control group, body weight at 42 d, average daily gain and European Production Efficiency Factor over the 42 d phase in the B. subtilis group and positive control group were significantly increased ( P < 0.05); feed conversion rates in the B. subtilis group and positive control group were significantly decreased ( P < 0.05); and average daily feed intake and mortality were not significantly different ( P > 0.05). The villus height to crypt depth ratio in the ileum of the B. subtilis group was significantly higher ( P < 0.05) than that of the negative control group. The results of cecal microflora at genus level were as follows. As compared with the negative control group, the abundance of Blautia , Faecalibacterium , Flavonifractor, and Hydrogenoanaerobacterium of the B. subtilis group and positive control group was significantly higher ( P < 0.05), whereas the abundance of Odoribacter was significantly lower ( P < 0.05). Moreover, abundance of the genera Romboutsia in the B. subtilis group was higher ( P < 0.05) than that in the positive control group. The abundance of Flavonifractor , Erysipelatoclostridium, and Hydrogenoanaerobacterium were positively correlated with body weight and average daily gain by Spearman correlation analysis. In conclusion, dietary supplementation with B. subtilis improved growth performance of broilers which may be related to the increased abundance of Blautia , Faecalibacterium , Flavonifractor , Hydrogenoanaerobacterium, and Romboutsia , along with the decreased abundance of Odoribacter . In addition, the effect of B. subtilis was superior to zinc bacitracin in improving intestinal microbial composition of broilers. Therefore, B. subtilis ...
Soy and soy-based foods are considered healthy, particularly in many Asia-Pacific countries, where soy products have long been consumed. Soy and soy-related products have been found to help prevent the occurrence of cardiovascular diseases and certain types of cancer, such as breast and prostate cancer. These products can also have antioxidative effects that alleviate hot flashes during menopause and bone loss. These biological and therapeutic functions are primarily due to the isoflavones derived from soy, whose structure is similar to the structure of 17-β-oestradiol. Despite the many health benefits for humans and animals, the application of isoflavones remains controversial because of their anti-oestrogenic properties. We focused on general information regarding isoflavones, as well as their structure, function, and application.We summarized evidence showing that dietary or supplemental isoflavones exert protective effects on the health of humans and animals. Based on the literature, we conclude that soy foods and isoflavones may be effective and safe; however, more high-quality trials are needed to fully substantiate their potential use.
Rational: Salmonella Enteritidis (S. Enteritidis) is a globally significant zoonotic foodborne pathogen which has led to large numbers of deaths in humans and caused economic losses in animal husbandry. S. Enteritidis invades host cells and survives within the cells, causing resistance to antibiotic treatment. Effective methods of elimination and eradication of intracellular S. Enteritidis are still very limited. Here we evaluated whether a new intracellular antibacterial strategy using iron oxide nanozymes (IONzymes) exerted highly antibacterial efficacy via its intrinsic peroxidase-like activity in vitro and in vivo.Methods: The antibacterial activities of IONzymes against planktonic S. Enteritidis, intracellular S. Enteritidis in Leghorn Male Hepatoma-derived cells (LMH), and liver from specific pathogen free (SPF) chicks were investigated by spread-plate colony count method and cell viability assay. Changes in levels of microtubule-associated protein light chain 3 (LC3), a widely used marker for autophagosomes, were analyzed by immunoblotting, immunofluorescence, and electron microscopy. Reactive oxygen species (ROS) production was also assessed in vitro. High-throughput RNA sequencing was used to investigate the effects of IONzymes on liver transcriptome of S. Enteritidis-infected chicks.Results: We demonstrated that IONzymes had high biocompatibility with cultured LMH cells and chickens, which significantly inhibited intracellular S. Enteritidis survival in vitro and in vivo. In addition, co-localization of IONzymes with S. Enteritidis were observed in autophagic vacuoles of LMH cells and liver of chickens infected by S. Enteritidis, indicating that IONzymes mediated antibacterial reaction of S. Enteritidis with autophagic pathway. We found ROS level was significantly increased in infected LMH cells treated with IONzymes, which might enhance the autophagic elimination of intracellular S. Enteritidis. Moreover, orally administered IONzymes decreased S. Enteritidis organ invasion of the liver and prevented pathological lesions in a chicken-infection model. Non-target transcriptomic profiling also discovered IONzymes could change hepatic oxidation-reduction and autophagy related gene expressions in the S. Enteritidis infected chickens.Conclusion: These data suggest that IONzymes can increase ROS levels to promote the antibacterial effects of acid autophagic vacuoles, and thus suppress the establishment and survival of invading intracellular S. Enteritidis. As a result, IONzymes may be a novel alternative to current antibiotics for the control of intractable S. Enteritidis infections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.