This paper presents a dataset for vision-based autonomous Functional Movement Screen (FMS) collected from 45 human subjects of different ages (18–59 years old) executing the following movements: deep squat, hurdle step, in-line lunge, shoulder mobility, active straight raise, trunk stability push-up and rotary stability. Specifically, shoulder mobility was performed only once by different subjects, while the other movements were repeated for three episodes each. Each episode was saved as one record and was annotated from 0 to 3 by three FMS experts. The main strength of our database is twofold. One is the multimodal data provided, including color images, depth images, quaternions, 3D human skeleton joints and 2D pixel trajectories of 32 joints. The other is the multiview data collected from the two synchronized Azure Kinect sensors in front of and on the side of the subjects. Finally, our dataset contains a total of 1812 recordings, with 3624 episodes. The size of the dataset is 190 GB. This dataset provides the opportunity for automatic action quality evaluation of FMS.
Establishing and illustrating a predictive and prescriptive model of playing styles that football teams adopt during matches is a key step toward describing and measuring the effectiveness of styles of play. The current study aimed to identify and measure the effectiveness of different defensive playing styles for professional football teams considering the opponent’s expected goal. Event data of all 1,120 matches played in the Chinese Football Super League (CSL) from the 2016 to 2020 seasons were collected, with fifteen defense-related performance variables being extracted. The PCA model (KMO = 0.76) output eight factors that represented 7 different styles of play (factor 6 and 8 represent one style of play) and explained 85.17% of the total variance. An expected goal (xG) model was built using data related to 27,852 shots. Finally, the xG of the opponent was calculated in the multivariate regression model, outputting five factors that (p < 0.05) explained 41.6% of the total variance in the xG of the opponent and receiving a dangerous situation (factor 7) was the most apparent style (31.3%). Finally, the predicted model with defensive styles correlated with actual xG of the opponent at r = 0.62 using the 2020 season as testing data which showed that the predicted xG was correlated moderately with the actual. The result indicated that if the team strengthened the defense closed to the own goal, high intensity confrontation, and defense of goalkeeper, meanwhile making less errors and receiving less dangerous situations, the xG of the opponent would be greatly reduced.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.