Triggering receptor expressed on myeloid cell 2 (TREM2) is a surface receptor that, in the central nervous system, is exclusively expressed on microglia. TREM2 variants have been linked to increased risk for neurodegenerative diseases, but the functional effects of microglial TREM2 remain largely unknown. To this end, we investigated TAR-DNA binding protein 43 kDa (TDP-43)-related neurodegenerative disease via viral-mediated expression of human TDP-43 protein (hTDP-43) in neonatal and adult mice or inducible expression of hTDP43 with defective nuclear localization signals in transgenic mice. We found that TREM2 deficiency impaired microglia phagocytic clearance of pathological TDP-43, and enhanced neuronal damage and motor function impairments. Mass cytometry analysis revealed that hTDP-43 induced a TREM2-dependent subpopulation of microglia with high CD11c expression and higher phagocytic ability. Using mass spectrometry, we further demonstrated an interaction between TDP-43 and TREM2, in vitro and in vivo, in hTDP-43-expressing transgenic mouse brains. We computationally identified the region within hTDP-43 that interacts with TREM2 and observed the potential interaction in ALS patient tissues. Our data reveal the novel interaction between TREM2 and TDP-43, highlighting that TDP-43 is a potential ligand for microglial TREM2 and the interaction mediates neuroprotection of microglial TREM2 in TDP-43-related neurodegeneration.
Polychlorinated biphenyls are wide pollutants readily detected in environmental and human specimens. DNA adduction occurs through the corresponding quinones. Polychlorinated biphenyls are first metabolized to arene oxides, which can be further oxidized to dihydroxy metabolites by microsomal cytochrome p450s. The catechol and hydroquinone products are further oxidized by peroxidases to quinones, which are electrophilic and capable of reacting with DNA to form adducts. DNA adduction is initiated by Michael addition preferentially to guanosine followed by stabilization through enolization. Another nucleophilic attack forms a five-membered ring, which aromatizes by dehydration to form the final adduct. This report describes the characterization and quantitative study of DNA adducts formed from lower chlorinated PCB-derived quinones. Quantitative study by HPLC/ESI-MS/MS and (32)P-postlabeling-HPLC gave the adduct levels in the range of 3-1200 adducts per 10(8) nucleotides. These results demonstrate that increasing chlorine substitution is associated with lower yields of DNA adduct. Although (32)P-postlabeling is more sensitive than HPLC/ESI-MS/MS for the quantitative analysis of DNA adducts, modification levels were severely underestimated by the (32)P-postlabeling assay as compared to the HPLC/ESI-MS/MS assay.
Benzoxepane derivatives were designed and synthesized, and one hit compound emerged as being effective in vitro with low toxicity. In vivo, this hit compound ameliorated both sickness behavior through anti‐inflammation in LPS‐induced neuroinflammatory mice model and cerebral ischemic injury through anti‐neuroinflammation in rats subjected to transient middle cerebral artery occlusion. Target fishing for the hit compound using photoaffinity probes led to identification of PKM2 as the target protein responsible for anti‐inflammatory effect of the hit compound. Furthermore, the hit exhibited an anti‐neuroinflammatory effect in vitro and in vivo by inhibiting PKM2‐mediated glycolysis and NLRP3 activation, indicating PKM2 as a novel target for neuroinflammation and its related brain disorders. This hit compound has a better safety profile compared to shikonin, a reported PKM2 inhibitor, identifying it as a lead compound in targeting PKM2 for the treatment of inflammation‐related diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.