The primary cilium is a microtubule-based organelle that protrudes from the cell surface and plays essential roles in embryonic development. Ciliogenesis begins with the successive fusion of preciliary vesicles to form ciliary vesicles, which then dock onto the distal end of the mother centriole. Rab proteins have been linked to cilia formation in cultured cells, but not yet in vivo. In the present study, we demonstrate that endocytic recycling protein Rab34 localizes to cilia, and that its mutation results in significant decrease of ciliogenesis in both cultured cells and mice. Rab34 is required for the successive fusion of preciliary vesicles to generate ciliary vesicles and for the migration of the mother centriole from perinuclear region to plasma membrane. We also show that Rab34 mutant mice exhibit polydactyly, and cleft-lip and-palate. These phenotypes are consistent with observations that nonciliated Rab34 mutant cells fail to respond to Hedgehog signaling and that processing of full-length Gli3 to its C-terminally truncated form is reduced in Rab34 mutant embryos. Therefore, Rab34 is required for an early step of ciliary vesicle formation and Hh signaling in vivo. This article has an associated First Person interview with the first author of the paper.
Genes encoding subunits of SWItch/Sucrose Non-Fermenting (SWI/SNF) chromatin remodeling complexes are collectively mutated in 20% of all human cancers, among which the AT-rich interacting domain−containing protein 1A (ARID1A, also known as BAF250a, B120, C1orf4, Osa1) that encodes protein ARID1A is the most frequently mutated, and mutations in ARID1A have been found in various types of cancer. ARID1A is thought to play a significant role both in tumor initiation and in tumor suppression, which is highly dependent upon context. Recent molecular mechanistic research has revealed that ARID1A participates in tumor progression through its effects on control of cell cycle, modulation of cellular functions such as EMT, and regulation of various signaling pathways. In this review, we synthesize a mechanistic understanding of the role of ARID1A in human tumor initiation as well as in tumor suppression and further discuss the implications of these new discoveries for potential cancer intervention. We also highlight the mechanisms by which mutations affecting the subunits in SWI/SNF complexes promote cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.