To conduct better research in hepatocellular carcinoma resection, this paper used 3D machine learning and logistic regression algorithm to study the preoperative assistance of patients undergoing hepatectomy. In this study, the logistic regression model was analyzed to find the influencing factors for the survival and recurrence of patients. The clinical data of 50 HCC patients who underwent extensive hepatectomy (≥4 segments of the liver) admitted to our hospital from June 2020 to December 2020 were selected to calculate the liver volume, simulated surgical resection volume, residual liver volume, surgical margin, etc. The results showed that the simulated liver volume of 50 patients was 845.2 + 285.5 mL, and the actual liver volume of 50 patients was 826.3 ± 268.1 mL, and there was no significant difference between the two groups (t = 0.425;
P
> 0.05). Compared with the logistic regression model, the machine learning method has a better prediction effect, but the logistic regression model has better interpretability. The analysis of the relationship between the liver tumour and hepatic vessels in practical problems has specific clinical application value for accurately evaluating the volume of liver resection and surgical margin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.