Small interfering RNA (siRNA) technology has vast potential for functional genomics and development of therapeutics. However, it faces many obstacles predominantly instability of siRNAs due to nuclease digestion and subsequently biologically short half-life. Chemical modifications in siRNAs provide means to overcome these shortcomings and improve their stability and potency. Despite enormous utility bioinformatics resource of these chemically modified siRNAs (cm-siRNAs) is lacking. Therefore, we have developed siRNAmod, a specialized databank for chemically modified siRNAs. Currently, our repository contains a total of 4894 chemically modified-siRNA sequences, comprising 128 unique chemical modifications on different positions with various permutations and combinations. It incorporates important information on siRNA sequence, chemical modification, their number and respective position, structure, simplified molecular input line entry system canonical (SMILES), efficacy of modified siRNA, target gene, cell line, experimental methods, reference etc. It is developed and hosted using Linux Apache MySQL PHP (LAMP) software bundle. Standard user-friendly browse, search facility and analysis tools are also integrated. It would assist in understanding the effect of chemical modifications and further development of stable and efficacious siRNAs for research as well as therapeutics. siRNAmod is freely available at: http://crdd.osdd.net/servers/sirnamod.
Current Zika virus (ZIKV) outbreaks that spread in several areas of Africa, Southeast Asia, and in pacific islands is declared as a global health emergency by World Health Organization (WHO). It causes Zika fever and illness ranging from severe autoimmune to neurological complications in humans. To facilitate research on this virus, we have developed an integrative multi-omics platform; ZikaVR (http://bioinfo.imtech.res.in/manojk/zikavr/), dedicated to the ZIKV genomic, proteomic and therapeutic knowledge. It comprises of whole genome sequences, their respective functional information regarding proteins, genes, and structural content. Additionally, it also delivers sophisticated analysis such as whole-genome alignments, conservation and variation, CpG islands, codon context, usage bias and phylogenetic inferences at whole genome and proteome level with user-friendly visual environment. Further, glycosylation sites and molecular diagnostic primers were also analyzed. Most importantly, we also proposed potential therapeutically imperative constituents namely vaccine epitopes, siRNAs, miRNAs, sgRNAs and repurposing drug candidates.
Chemical modifications have been extensively exploited to circumvent shortcomings in therapeutic applications of small interfering RNAs (siRNAs). However, experimental designing and testing of these siRNAs or chemically modified siRNAs (cm-siRNAs) involves enormous resources. Therefore, in-silico intervention in designing cm-siRNAs would be of utmost importance. We developed SMEpred workbench to predict the efficacy of normal siRNAs as well as cm-siRNAs using 3031 heterogeneous cm-siRNA sequences from siRNAmod database. These include 30 frequently used chemical modifications on different positions of either siRNA strand. Support Vector Machine (SVM) was employed to develop predictive models utilizing various sequence features namely mono-, di-nucleotide composition, binary pattern and their hybrids. We achieved highest Pearson Correlation Coefficient (PCC) of 0.80 during 10-fold cross validation and similar PCC value in independent validation. We have provided the algorithm in the 'SMEpred' pipeline to predict the normal siRNAs from the gene or mRNA sequence. For multiple modifications, we have assembled 'MultiModGen' module to design multiple modifications and further process them to evaluate their predicted efficacies. SMEpred webserver will be useful to scientific community engaged in use of RNAi-based technology as well as for therapeutic development. Web server is available for public use at following URL address: http://bioinfo.imtech.res.in/manojk/smepred.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.