There are two parts to this work: first, we study the error correction properties of the real-space renormalization group (RG). The long-distance operators are the (approximately) correctable operators encoded in the physical algebra of short-distance operators. This is closely related to modeling the holographic map as a quantum error correction code. As opposed to holography, the real-space RG of a many-body quantum system does not have the complementary recovery property. We discuss the role of large N and a large gap in the spectrum of operators in the emergence of complementary recovery.Second, we study the operator algebra exact quantum error correction for any von Neumann algebra. We show that similar to the finite dimensional case, for any error map in between von Neumann algebras the Petz dual of the error map is a recovery map if the inclusion of the correctable subalgebra of operators has finite index.
The entanglement theory in quantum systems with internal symmetries is rich due to the spontaneous creation of entangled pairs of charge/anti-charge particles at the entangling surface. We call these pair creation operators the bi-local intertwiners because of the role they play in the representation theory of the symmetry group. We define a generalized measure of entanglement entropy as a measure of information erased under restriction to a subspace of observables. We argue that the correct entanglement measure in the presence of charges is the sum of two terms; one measuring the entanglement of chargeneutral operators, and the other measuring the contribution of the bi-local intertwiners. Our expression is unambiguously defined in lattice models as well in quantum field theory (QFT). We use the Tomita-Takesaki modular theory to highlight the differences between QFT and lattice models, and discuss an extension of the algebra of QFT that leads to a factorization of the charged modes.
We use the Tomita-Takesaki modular theory and the Kubo-Ando operator mean to write down a large class of multi-state quantum f -divergences and prove that they satisfy the data processing inequality. For two states, this class includes the (α, z)-Rényi divergences, the f -divergences of Petz, and the measures in [1] as special cases. The method used is the interpolation theory of non-commutative L p ω spaces and the result applies to general von Neumann algebras including the local algebra of quantum field theory. We conjecture that these multi-state Rényi divergences have operational interpretations in terms of the optimal error probabilities in asymmetric multi-state quantum state discrimination.
We use the Tomita–Takesaki modular theory and the Kubo–Ando operator mean to write down a large class of multi-state quantum f-divergences and prove that they satisfy the data processing inequality. For two states, this class includes the ( α, z)-Rényi divergences, the f-divergences of Petz, and the Rényi Belavkin-Staszewski relative entropy as special cases. The method used is the interpolation theory of non-commutative [Formula: see text] spaces, and the result applies to general von Neumann algebras, including the local algebra of quantum field theory. We conjecture that these multi-state Rényi divergences have operational interpretations in terms of the optimal error probabilities in asymmetric multi-state quantum state discrimination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.