Attention focus changes performance, and external focus (EF) improves performance compared to internal focus (IF). However, recently, the dominance of attention focus, rather than the effectiveness of unilateral EF, has been examined. Although the positive effects of EF on standing postural control have been reported, the dominance of attention focus has not yet been examined. Therefore, the purpose of this study was to examine the dominance of attention focus and its neural mechanism in standing postural control using electroencephalography (EEG). A standing postural control task under IF and EF conditions was performed on healthy young men. Gravity center sway and cortical activity simultaneously using a stabilometer and an EEG were measured. Participants were classified into IF-dominant and EF-dominant groups according to their index of postural stability. The EEG was analyzed, and cortical activity in the theta-wave band was compared between the IF-dominant and EF-dominant groups. Significant neural activity was observed in the left parietal lobe of the IF-dominant group in the IF condition, and in the left frontal lobe of the EF-dominant group in the EF condition (p < 0.05). Differences in EEG activity between IF-dominant and EF-dominant groups, in standing postural control, were detected. This contributes to the development of training methods that consider attentional focus dominance in postural control.
Repetitive peripheral magnetic stimulation is a novel non-invasive technique for applying repetitive magnetic stimulation to the peripheral nerves and muscles. Contrarily, a person imagines that he/she is exercising during motor imagery. Resting-state electroencephalography can evaluate the ability of motor imagery; however, the effects of motor imagery and repetitive peripheral magnetic stimulation on resting-state electroencephalography are unknown. We examined the effects of motor imagery and repetitive peripheral magnetic stimulation on the vividness of motor imagery and resting-state electroencephalography. The participants were divided into a motor imagery group and motor imagery and repetitive peripheral magnetic stimulation group. They performed 60 motor imagery tasks involving wrist dorsiflexion movement. In the motor imagery and repetitive peripheral magnetic stimulation group, we applied repetitive peripheral magnetic stimulation to the extensor carpi radialis longus muscle during motor imagery. We measured the vividness of motor imagery and resting-state electroencephalography before and after the task. Both groups displayed a significant increase in the vividness of motor imagery. The motor imagery and repetitive peripheral magnetic stimulation group exhibited increased β activity in the anterior cingulate cortex by source localization for electroencephalography. Hence, combined motor imagery and repetitive peripheral magnetic stimulation changes the resting-state electroencephalography activity and may promote motor imagery.
Repetitive peripheral magnetic stimulation (rPMS) is a noninvasive method involving the repetitive magnetic stimulation of peripheral nerves and muscles. Recently, its potential as a new neuromodulation technique for sensory motor disorders has been recognized. Its advantages include less pain than with electrical stimulation and that neuromuscular stimulation can be performed over clothing. These advantages make it a practical and straightforward adjunct tool widely used in clinical practice. In particular, the combination of rPMS and general rehabilitation reportedly promotes functional improvement in stroke patients with difficult involuntary contractions. This chapter reviews rPMS and its potential clinical applications in rehabilitation.
Objective Developing a Japanese version of the Movement Imagery Questionnaire-Revised Second Version (MIQ-RS) is essential for widespread evaluation and treatment based on motor imagery in physically disabled persons and patients in rehabilitation. This study aimed to investigate the reliability and validity of the Movement Imagery Questionnaire-Revised Second Version (MIQ-RS), which assesses motor imagery ability, by translating it into Japanese. Results This study enrolled twenty healthy participants (10 men and 10 women, mean age 21.17 ± 1.10 years). Reliability was examined for internal consistency using Cronbach’s alpha coefficient. Spearman’s rank correlation coefficient was used to examine the criterion-related validity of the MIQ-RS and the Kinesthetic and Visual Imagery Questionnaire (KVIQ-20). Results showed that Cronbach’s alpha coefficients for the MIQ-RS were 0.81 and 0.82 for visual and kinesthetic imagery, respectively. Significant positive correlations were found between each visual and kinesthetic imagery score, and each total on the MIQ-RS and KVIQ-20 scores (r = 0.73, p < 0.01; r = 0.84, p < 0.01; r = 0.80, p < 0.01, respectively). This study suggests that the Japanese version of the MIQ-RS is a reliable and valid method of assessing motor imagery ability.
IntroductionMotor imagery (MI) is a method of imagining movement without actual movement, and its use in combination with motor execution (ME) enhances the effects of motor learning. Neurofeedback (NFB) is another method that promotes the effects of MI. This study aimed to investigate the effects of NFB on combined MI and ME (MIME) training in a standing postural control task.MethodsSixteen participants were randomly divided into MIME and MIME + NFB groups and performed 10 trials of a postural control task on an unstable board, with nine trials of MI in between. Electroencephalogram was assessed during MI, and the MIME + NFB group received neurofeedback on the degree of MI via auditory stimulation. A postural control task using an unstable board was performed before and after the MIME task, during which postural instability was evaluated.ResultsPostural instability was reduced after the MIME task in both groups. In addition, the root mean square, which indicates the sway of the unstable board, was significantly reduced in the MIME + NFB group compared to that in the MIME group.ConclusionOur results indicate that MIME training is effective for motor learning of standing postural control. Furthermore, when MI and ME are combined, the feedback on the degree of MI enhances the learning effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.