Background: The details of the folding mechanisms have not yet been fully understood for many proteins, and it is believed that the information on the folding mechanism of a protein is encoded in its amino acid sequence. βtrefoil proteins are known to have the same 3D scaffold, namely, a threefold symmetric scaffold, despite the proteins' low sequence identity among superfamilies. In this study, we extract an initial folding unit from the amino acid sequences of irregular β-trefoil proteins by constructing an average distance map (ADM) and utilizing interresidue average distance statistics to determine the relative contact frequencies for residue pairs in terms of F values. We compare our sequence-based prediction results with the packing between hydrophobic residues in native 3D structures and a Gō-model simulation. Results: The ADM and F-value analyses predict that the N-terminal and C-terminal regions are compact and that the hydrophobic residues at the central region can be regarded as an interaction center with other residues. These results correspond well to those of the Gō-model simulations. Moreover, our results indicate that the irregular parts in the β-trefoil proteins do not hinder the protein formation. Conserved hydrophobic residues on the β5 strand are always the interaction center of packing between the conserved hydrophobic residues in both regular and irregular β-trefoil proteins. Conclusions: We revealed that the β5 strand plays an important role in β-trefoil protein structure construction. The sequence-based methods used in this study can extract the protein folding information from only amino acid sequence data, and well corresponded to 3D structure-based Gō-model simulation and available experimental results.
Describing the whole story of protein folding is currently the main enigmatic problem in molecular bioinformatics study. Protein folding mechanisms have been intensively investigated with experimental as well as simulation techniques. Since a protein folds into its specific 3D structure from a unique amino acid sequence, it is interesting to extract as much information as possible from the amino acid sequence of a protein. Analyses based on inter‐residue average distance statistics and a coarse‐grained Gō‐model simulation were conducted on Ig and FN3 domains of a titin protein to decode the folding mechanisms from their sequence data and native structure data, respectively. The central region of all domains was predicted to be an initial folding unit, that is, stable in an early state of folding. This common feature coincides well with the experimental results and underscores the significance of the β‐sandwich proteins' common structure, namely, the key strands for folding and the Greek‐key motif, which is located in the central region. We confirmed that our sequence‐based techniques were able to predict the initial folding event just next to the denatured state and that a 3D‐based Gō‐model simulation can be used to investigate the whole process of protein folding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.