In this work, the potential for using Millettia pinnata stalk for extracting cellulosic natural fibers and its subsequent use in reinforced composites was studied. The extracted fibers were characterized for its composition, mechanical, thermal stability and morphological properties. Compositional analysis showed that the fibers possessed 54% cellulose, 12% hemicellulose, 15% lignin and 11% ash. The tensile strength of the fiber was 310 MPa, which is comparable to cotton and linen. The tensile strength of the M. pinnata fiber-reinforced polypropylene composites was 17.96 MPa which was similar to other natural fiber-based composites. M. pinnata fibers appear promising for a wide range of applications including textiles and other typical composites applications. ReferencesBhuvaneswari HB, Vinayaka DL, Ilangovan M, Reddy N (2017) Completely biodegradable banana fiber-wheat gluten composites for dielectric applications. J Mater Sci 28(17):12383-12390Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
The objective of this study is to optimize the different parameters to carry out analysis of fatty acids. A kinetic was observed for first order enzymatic hydrolysis of flax seed methyl ester was carried out by using Rhizomucor michei. In this study the analysis of hydrolysis was carried out by varying the temperature (30-40oC) and enzyme load (2-5%). The optimal condition were found to temperature 50oC, 6h reaction time, buffer to flax seed methyl ester ratio 1.5:1(v/w) and 4% enzyme load to achieve a maximum hydrolysis conversion of 97.56%. The effect of temperature on the reaction rate constant and equilibrium constant has been determined using Arrhenius equation. The heat of reaction was found 14.516 KJ/mol. Taguchi's design of experiment L16 and L9 orthogonal array was performed to optimize hydrolysis reaction conditions. Rate of reaction, effect of temperature, enzyme modifier, pH and oil to buffer ratio were considered as a primary influencing parameters which effects the percentage of hydrolysis and fatty acid formed. From the analysis of variance, the influencing parameters on production of fatty acid were reaction time and enzyme modifier. The predicted conversion was found in good rectification with experimental values having R2=0.9945 and R2=0.983. Maximum fatty acid formed was 98.76% from methyl ester and 98.92% from oil.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.