How much information do NLP tasks really need from a transformer's attention mechanism at application-time (inference)? From recent work, we know that there is sparsity in transformers and that the floating-points within its computation can be discretized to fewer values with minimal loss to task accuracies. However, this requires retraining or even creating entirely new models, both of which can be expensive and carbon-emitting. Focused on optimizations that do not require training, we systematically study the full range of typical attention values necessary. This informs the design of an inference-time quantization technique using both pruning and logscaled mapping which produces only a few (e.g. 2 3 ) unique values. Over the tasks of question answering and sentiment analysis, we find nearly 80% of attention values can be pruned to zeros with minimal (< 1.0%) relative loss in accuracy. We use this pruning technique in conjunction with quantizing the attention values to only a 3-bit format, without retraining, resulting in only a 0.8% accuracy reduction on question answering with fine-tuned RoBERTa.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.