Oxidoreductases and metalloproteins, representing more than one third of all known proteins, serve as significant catalysts for numerous biological processes that involve electron transfers such as photosynthesis, respiration, metabolism, and molecular signaling. The functional properties of the oxidoreductases/metalloproteins are determined by the nature of their redox centers. Protein engineering is a powerful approach that is used to incorporate biological and abiological redox cofactors as well as novel enzymes and redox proteins with predictable structures and desirable functions for important biological and chemical applications. The methods of protein engineering, mainly rational design, directed evolution, protein surface modifications, and domain shuffling, have allowed the creation and study of a number of redox proteins. This review presents a selection of engineered redox proteins achieved through these methods, resulting in a manipulation in redox potentials, an increase in electron-transfer efficiency, and an expansion of native proteins by de novo design. Such engineered/modified redox proteins with desired properties have led to a broad spectrum of practical applications, ranging from biosensors, biofuel cells, to pharmaceuticals and hybrid catalysis. Glucose biosensors are one of the most successful products in enzyme electrochemistry, with reconstituted glucose oxidase achieving effective electrical communication with the sensor electrode; direct electron-transfer-type biofuel cells are developed to avoid thermodynamic loss and mediator leakage; and fusion proteins of P450s and redox partners make the biocatalytic generation of drug metabolites possible. In summary, this review includes the properties and applications of the engineered redox proteins as well as their significance and great potential in the exploration of bioelectrochemical sensing devices. Antioxid. Redox Signal. 17, 1796-1822.
Background
Optical coherence tomography (OCT) is a powerful imaging modality to visualize tissue structures, with axial image pixel resolution as high as 1.6 μm in tissue. However, OCT is intrinsically limited to providing structural information as the OCT contrast is produced by optically scattering tissues.
Methods
Gold nanorods (GNRs) were injected into the anterior chamber (AC) and cornea of mice eyes which could create a significant OCT signal and hence could be used as a contrast agent for in vivo OCT imaging.
Results
A dose of 30 nM of GNRs (13 nm in diameter and 45 nm in length) were injected to the AC of mice eyes and produced an OCT contrast nearly 50-fold higher than control mice injected with saline. Furthermore, the lowest detectable concentration of GNRs in living mice AC was experimentally estimated to be as low as 120 pM.
Conclusions
The high sensitivity and low toxicity of GNRs brings great promise for OCT to uniquely become a high-resolution molecular imaging modality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.