We present a detailed process theory of the moment-by-moment working-memory retrievals and associated control structure that subserve sentence comprehension. The theory is derived from the application of independently motivated principles of memory and cognitive skill to the specialized task of sentence parsing. The resulting theory construes sentence processing as a series of skilled associative memory retrievals modulated by similarity-based interference and fluctuating activation. The cognitive principles are formalized in computational form in the Adaptive Control of Thought-Rational (ACT-R) architecture, and our process model is realized in ACT-R. We present the results of 6 sets of simulations: 5 simulation sets provide quantitative accounts of the effects of length and structural interference on both unambiguous and garden-path structures. A final simulation set provides a graded taxonomy of double center embeddings ranging from relatively easy to extremely difficult. The explanation of center-embedding difficulty is a novel one that derives from the model's complete reliance on discriminating retrieval cues in the absence of an explicit representation of serial order information. All fits were obtained with only 1 free scaling parameter fixed across the simulations; all other parameters were ACT-R defaults. The modeling results support the hypothesis that fluctuating activation and similarity-based interference are the key factors shaping working memory in sentence processing. We contrast the theory and empirical predictions with several related accounts of sentence-processing complexity.
Linear mixed-effects models have increasingly replaced mixed-model analyses of variance for statistical inference in factorial psycholinguistic experiments. Although LMMs have many advantages over ANOVA, like ANOVAs, setting them up for data analysis also requires some care. One simple option, when numerically possible, is to fit the full variance-covariance structure of random effects (the maximal model; Barr, Levy, Scheepers & Tily, 2013), presumably to keep Type I error down to the nominal α in the presence of random effects. Although it is true that fitting a model with only random intercepts may lead to higher Type I error, fitting a maximal model also has a cost: it can lead to a significant loss of power. We demonstrate this with simulations and suggest that for typical psychological and psycholinguistic data, higher power is achieved without inflating Type I error rate if a model selection criterion is used to select a random effect structure that is supported by the data.
Understanding a sentence requires a working memory of the partial products of comprehension, so that linguistic relations between temporally distal parts of the sentence can be rapidly computed. We describe an emerging theoretical framework for this working memory system that incorporates several independently motivated principles of memory: a sharply limited attentional focus, rapid retrieval of item (but not order) information subject to interference from similar items, and activation decay (forgetting over time). A computational model embodying these principles provides an explanation of the functional capacities and severe limitations of human processing, as well as accounts of reading times. The broad implication is that the detailed nature of crosslinguistic sentence processing emerges from the interaction of general principles of human memory with the specialized task of language comprehension.
Factorial experiments in research on memory, language, and in other areas are often analyzed using analysis of variance (ANOVA). However, for effects with more than one numerator degrees of freedom, e.g., for experimental factors with more than two levels, the ANOVA omnibus F-test is not informative about the source of a main effect or interaction.Because researchers typically have specific hypotheses about which condition means differ from each other, a priori contrasts (i.e., comparisons planned before the sample means are known) between specific conditions or combinations of conditions are the appropriate way to represent such hypotheses in the statistical model. Many researchers have pointed out that contrasts should be "tested instead of, rather than as a supplement to, the ordinary 'omnibus' F test" (Hays, 1973, p. 601). In this tutorial, we explain the mathematics underlying different kinds of contrasts (i.e., treatment, sum, repeated, polynomial, custom, nested, interaction contrasts), discuss their properties, and demonstrate how they are applied in the R System for Statistical Computing (R Core Team, 2018). In this context, we explain the generalized inverse which is needed to compute the coefficients for contrasts that test hypotheses that are not covered by the default set of contrasts. A detailed understanding of contrast coding is crucial for successful and correct specification in linear models (including linear mixed models). Contrasts defined a priori yield far more useful confirmatory tests of experimental hypotheses than standard omnibus F-test.
The analysis of experimental data with mixed-effects models requires decisions about the specification of the appropriate random-effects structure. Recently, Barr, Levy, Scheepers, and Tily 2013 recommended fitting 'maximal' models with all possible random effect components included. Estimation of maximal models, however, may not converge. We show that failure to converge typically is not due to a suboptimal estimation algorithm, but is a consequence of attempting to fit a model that is too complex to be properly supported by the data, irrespective of whether estimation is based on maximum likelihood or on Bayesian hierarchical modeling with uninformative or weakly informative priors. Importantly, even under convergence, overparameterization may lead to uninterpretable models. We provide diagnostic tools for detecting overparameterization and guiding model simplification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.