-We present a fast iterative algorithm for identifying the Support Vectors of a given set of points. Our algorithm works by maintaining a candidate Support Vector set. It uses a greedy approach to pick points for inclusion in the candidate set. When the addition of a point to the candidate set is blocked because of other points already present in the set we use a backtracking approach to prune away such points. To speed up convergence we initialize our algorithm with the nearest pair of points from opposite classes. We then use an optimization based approach to increment or prune the candidate Support Vector set. The algorithm makes repeated passes over the data to satisfy the KKT constraints. The memory requirements of our algorithm scale as O(|S| 2 ) in the average case, where |S| is the size of the Support Vector set. We show that the algorithm is extremely competitive as compared to other conventional iterative algorithms like SMO and the NPA. We present results on a variety of real life datasets to validate our claims.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.