The gastrointestinal tract is populated by an array of microbial species that play an important role in metabolic and immune functions. The composition of microorganisms is influenced by the components of the host’s diet and can impact health. In the present study, dietary enrichment of lowbush wild blueberries (LWB) was examined to determine their effect on colon microbial composition and their potential in promoting gut health. The microbial composition and functional potential of the colon microbiota from Sprague Dawley rats fed control diets (AIN93) and LWB-enriched diets (AIN93+8% LWB powder substituting for dextrose) for 6 weeks were assessed using Illumina shotgun sequencing and bioinformatics tools. Our analysis revealed an alteration in the relative abundance of 3 phyla and 22 genera as representing approximately 14 and 8% of all phyla and genera identified, respectively. The LWB-enriched diet resulted in a significant reduction in the relative abundance of the genera Lactobacillus and Enterococcus. In addition, hierarchal analysis revealed a significant increase in the relative abundance of the phylum Actinobacteria, the order Actinomycetales, and several novel genera under the family Bifidobacteriaceae and Coriobacteriaceae, in the LWB group. Functional annotation of the shotgun sequences suggested that approximately 9% of the 4709 Kyoto Encyclopaedia of Gene and Genome (KEGG) hits identified were impacted by the LWB-diet. Open Reading Frames (ORFs) assigned to KEGG category xenobiotics biodegradation and metabolism were significantly greater in the LWB-enriched diet compared to the control and included the pathway for benzoate degradation [PATH:ko00362] and glycosaminoglycan degradation [PATH:ko00531]. Moreover, the number of ORFs assigned to the bacterial invasion of epithelial cells [PATH:ko05100] pathway was approximately 8 fold lower in the LWB group compared to controls. This study demonstrated that LWBs have the potential to promote gut health and can aid in the development of optimal diets.
The antimicrobial activity and model of action of polyphenolic compounds extracted from lowbush wild blueberries (LWB) were studied against Escherichia coli O157:H7. Polyphenols in LWB were extracted using 80% vol/vol methanol and designated as total blueberry phenolics (TBP). The fraction was further separated by a C-18 Sep-Pak cartridge into monomeric phenolics acids (MPA) and anthocyanins plus proanthocyanidins (A&P). The A&P fraction was further separated into anthocyanins and proanthocyanidins using a LH-20 Sephadex column. Each fraction was diluted in 0.85% wt/vol NaCl, inoculated with E. coli O157:H7 to achieve 8 log colony-forming units (CFU)/mL, and incubated at 25 °C for 1 h. The survival populations of E. coli O157:H7 in the phenolic fractions were determined by a viable cell counts method. The permeability of the cell membrane of E. coli O157:H7 was determined using LIVE/DEAD viability assay, and the damage was visualized by using transmission electron microscopy (TEM). Significant (p<0.05) reductions of 5 log CFU/mL of E. coli O157:H7 were observed for MPA at 0.4 g/L gallic acid equivalents (GAE), A&P at 0.9 g/L GAE, and anthocyanins at 0.65 g/L GAE. Reductions of 6-7 CFU/mL were observed for MPA at 0.8 g/L GAE, A&P at 1.8 g/L GAE, and anthocyanins at 1.3 g/L GAE compared to the control. The cell membrane of E. coli O157:H7 exhibited a significantly increased permeability when treated with proanthocyanidins (0.15 g/L GAE), A&P (0.45 g/L GAE), anthocyanins (0.65 g/L GAE), and TBP (0.14 g/L GAE). TEM confirmed the inactivation and increased membrane permeability of E. coli O157:H7. This study demonstrated the antimicrobial effect of polyphenols from LWB against E. coli O157:H7 and the probable mode of action.
Wildlife as a source of microbial contamination is a food safety concern. Deer feces (scat) have been determined as a point source for Escherichia coli O157:H7 contamination of fresh produce. The ecological role of the scooped scarab (Onthophagus hecate (Panzer)), a generalist dung beetle species common in Maine blueberry fields, was explored as a biological control agent and alternatively as a pathogen vector between deer scat and food.A large-scale field survey of wildlife scat indicated that pathogenic E. coli O157:H7 was present, albeit at a low prevalence (1.9% of samples, n = 318), in the Maine lowbush blueberry agroecosystem. A manipulative field experiment verified that, should contact occur between deer scat and blueberry plants and fruit during the summer, contamination with E. coli O157:H7 can occur and persist for more than 72 h. For both the positive control and an experimental scat inoculation treatment, the levels of the bacterial population decreased over time, but at different rates (treatment x time interaction: F
(1.9,18.8) = 358.486, P < 0.0001). The positive control inoculation, which resulted in a higher initial E. coli level on fruit, decayed at a faster rate than inoculation of fruit via scat in the experimental treatment.We conducted 2 laboratory studies to elucidate aspects of dung beetle feeding ecology as it relates to suppression of E. coli O157:H7 from deer scat to lowbush blueberry fruit. In both experiments, dung beetles buried the same amount of scat whether or not the scat was inoculated with the pathogen (F
(1,6) = 0.001; P = 0.999 and (F
(2,17) = 4.10, P = 0.147). Beetles feeding on E. coli inoculated deer scat were not found to vector the pathogen to fruit. In two studies, beetles lowered the amount of pathogenic E. coli persisting in soils compared to soils without beetles (F
(2,9) = 7.757; P = 0.05 and F
(2,17) = 8.0621, P = 0.004).Our study suggests that the dung beetle species, Onthophagus hecate, has the potential to contribute to the suppression of E. coli O157:H7 in agricultural landscapes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.