The mechanical competence of bone can be studied through the measurement of the components of its material elasticity, a property which can vary both in magnitude and in dependence upon orientation (anisotropy). While it is known that the elasticity is largely determined by the mineral constituents of the bone matrix, it is nonetheless clear that it must be also dependent upon the remaining constituents of bone material. In this work, the influence of organic components on the elasticity is explored by altering specific constituents of the bone matrix to varying degrees. This study addresses two questions: first, are the resulting changes in elasticity strongly or weakly dependent upon direction, and second, are they substantially dependent upon the nature and magnitude of the induced matrix alteration? To answer these questions, we performed different chemical manipulations of the bone matrix and measured the changes in elasticity and velocity using the technique of ultrasound critical angle reflectometry. Altering the properties of the organic matrix resulted in substantial and complex changes in the elasticity of bone. The observed changes were strongly dependent upon direction, could not be explained by changes in density alone, and varied strongly with the specific chemical treatment of the matrix. Immersion in urea selectively affected protein components of the organic matrix and resulted in reversible changes in velocity and elasticity, while removal of collagen caused anisotropic decreases and removal of all organic matter caused a collapse of all components of the elasticity. In conclusion, this study confirms that the organic matrix exerts a profound influence on the elasticity and indicates that the measurement of elastic properties at multiple directions is necessary in the assessment of bone mechanical competence. (J Bone Miner Res 1998;13:114-121)
To investigate the source of bone brittleness in the disease osteogenesis imperfecta (OI), biomechanical properties have been measured in the femurs from a homozygous (oim/oim) mutant mouse model of OI, its heterozygous littermates, and wild-type animals. The novel technique of ultrasound critical-angle reflectometry (UCR) was used to determine bone material elasticity matrix from measurements of the pressure and shear wave velocity at different orientations about selected points of the bone specimens. This nondestructive method is the only available means for obtaining measurements of this nature from a single surface. The ultrasound pressure wave velocity showed an increased isotropy in the homozygous compared to the wild-type specimens. This was reflected in a significant decrease in the principal elastic modulus measured along the length of the oim/oim bones (E33) while the modulus along the width (E11) did not change significantly, compared to wild-type specimens. The Poisson's ratio, v12, also had a significantly increased value in oim/oim bones. Measurements of these parameters in heterozygous animals generally fell between those from homozygous and control mice. The differences in the elasticity components in oim/oim bones indicate an altered stress distribution and a modified elastic response to loads, compared to normal bone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.