Mechanical spectral hole burning (MSHB) has been used to investigate the nonlinear dynamics in polymers, ranging from melts, solutions, block co-polymers, and glasses. MSHB was developed as an analog to the dielectric spectral hole burning method, which is not readily applicable in polymers due to weak dielectric response. While similar holes were observed in both mechanical and dielectric hole burning, the interpretations were different. In the latter case, it has been argued that the holes are related to dynamic heterogeneity as related to an increase in the local temperature of molecular sub-ensembles (spatial heterogeneity), while in the former case, the holes have been related to the type of dynamics (rubbery, Rouse, etc.). Recent work from our laboratories used MSHB to investigate glassy poly(methyl methacrylate) and showed evidence of hole burning and supported the hypothesis that the origin of holes was related to dynamic heterogeneity as evidenced by the holes being developed near the strong β-relaxation in PMMA. In this work, MSHB is used to study polycarbonate, which has a weak β-relaxation, and the results are compared with those observed in PMMA. We observe that the polycarbonate exhibits weak holes and the nature of the holes with a change in pump amplitude and frequency is different than observed in PMMA. These results support the hypothesis that the hole burning observed in amorphous polymers below the glass transition temperature is related to the strength of the β-transition, which, in turn, is related to molecular level heterogeneity in the material dynamics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.