The role of spinal cord plasticity in motor learning is largely unknown. This study explored the effects of H-reflex operant conditioning, a simple model of motor learning, on GABAergic input to spinal motoneurons in rats. Soleus motoneurons were labeled by retrograde transport of a fluorescent tracer and GABAergic terminals on them were identified by glutamic acid decarboxylase (GAD)67 immunoreactivity. Three groups were studied: (i) rats in which down-conditioning had reduced the H-reflex (successful HRdown rats); (ii) rats in which down-conditioning had not reduced the H-reflex (unsuccessful HRdown rats) and (iii) unconditioned (naive) rats. The number, size and GAD density of GABAergic terminals, and their coverage of the motoneuron, were significantly greater in successful HRdown rats than in unsuccessful HRdown or naive rats. It is likely that these differences are due to modifications in terminals from spinal interneurons in lamina VI-VII and that the increased terminal number, size, GAD density and coverage in successful HRdown rats reflect and convey a corticospinal tract influence that changes motoneuron firing threshold and thereby decreases the H-reflex. GABAergic terminals in spinal cord change after spinal cord transection. The present results demonstrate that such spinal cord plasticity also occurs in intact rats in the course of motor learning and suggest that this plasticity contributes to skill acquisition.
H-reflex down-conditioning increases GABAergic terminals on spinal cord motoneurons. To explore the origins of these terminals, we studied the numbers and distributions of spinal cord GABAergic interneurons. The number of identifiable GABAergic interneurons in the ventral horn was 78% greater in rats in which down-conditioning was successful than in naive rats or rats in which down-conditioning failed. No increase occurred in other spinal lamina or on the contralateral side. This finding supports the hypothesis that the corticospinal tract influence that induces the motoneuron plasticity underlying down-conditioning reaches the motoneuron through GABAergic interneurons in the ventral horn.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.