In 1991 a manuscript describing an instrument for studying magnetized plasmas was published in this journal. The Large Plasma Device (LAPD) was upgraded in 2001 and has become a national user facility for the study of basic plasma physics. The upgrade as well as diagnostics introduced since then has significantly changed the capabilities of the device. All references to the machine still quote the original RSI paper, which at this time is not appropriate. In this work, the properties of the updated LAPD are presented. The strategy of the machine construction, the available diagnostics, the parameters available for experiments, as well as illustrations of several experiments are presented here.
Dramatic eruption of an arched magnetic flux rope in a large ambient plasma has been studied in a laboratory experiment that simulates coronal loops. The eruption is initiated by laser generated plasma flows from the footpoints of the rope that significantly modify the magnetic-field topology and link the magnetic-field lines of the rope with the ambient plasma. Following this event, the flux rope erupts by releasing its plasma into the background. The resulting impulse excites intense magnetosonic waves that transfer energy to the ambient plasma and subsequently decay.
The interaction between two side-by-side solar prominence-like plasmas has been studied using a four-electrode magnetized plasma source that can impose a wide variety of surface boundary conditions. When the source is arranged to create two prominences with the same helicity ͑co-helicity͒, it is observed that helicity transfer from one prominence to the other causes the receiving prominence to erupt sooner and faster than the transmitting prominence. When the source is arranged to create two prominences with opposite helicity ͑counter-helicity͒, it is observed that upon merging, prominences wrap around each other to form closely spaced, writhing turns of plasma. This is followed by appearance of a distinct bright region in the middle and order of magnitude higher emission of soft x rays. The four-electrode device has also been used to change the angle of the neutral line and so form more pronounced S-shapes.
The dynamics of an exploding laser-produced plasma in a large ambient magneto-plasma was investigated with magnetic flux probes and Langmuir probes. Debris-ions expanding at super-Alfv enic velocity (up to M A ¼ 1:5) expel the ambient magnetic field, creating a large (>20 cm) diamagnetic cavity. We observe a field compression of up to B=B 0 ¼ 1:5 as well as localized electron heating at the edge of the bubble. Two-dimensional hybrid simulations reproduce these measurements well and show that the majority of the ambient ions are energized by the magnetic piston and swept outside the bubble volume. Nonlinear shear-Alfv en waves (dB=B 0 > 25%) are radiated from the cavity with a coupling efficiency of 70% from magnetic energy in the bubble to the wave. V
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.