Turning operation is a widely recognized metal removal process in the industry. If the machining were not run efficiently, it may affect the performance of the tool and the work piece by generating higher cutting forces and the temperature as in hard steel. To minimize these effects, lubrication has to be effective in reducing these forces and lowering the tool temperature. In the present study, machining experiments were conducted on EN24 steel with the application of nano sized boric acid (50 nm) as the solid lubricant that is mixed with titanium dioxide (100 µm) in SAE 40 oil. Turning tests are conducted using tungsten carbide tool inserts under dry, wet and MQL conditions to measure and compare the cutting forces, tool temperatures and roughness of the work piece. Results indicate that boric acid enables significant reduction in the cutting forces which in combination with the titanium dioxide helps to improve the heat dissipation; an advantage that makes such lubricants an effective cutting fluid. H3BO3 and TiO2 based nanofluid resulted in reducing the surface roughness of up to 2.7 µm that is a re-duction by ~15%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.