The current pandemic forced us to introspect and revisit our armamentarium of medicinal agents which could be life‐saving in emergency situations. Oxygen diffusion‐enhancing compounds represent one such class of potential therapeutic agents, particularly in ischemic conditions. As rewarding as the name suggests, these agents, represented by the most advanced and first‐in‐class molecule, trans‐sodium crocetinate (TSC), are the subject of intense clinical investigation, including Phase 1b/2b clinical trials for COVID‐19. Being a successor of a natural product, crocetin, TSC is being investigated for various cancers as a radiosensitizer owing to its oxygen diffusion enhancement capability. The unique properties of TSC make it a promising therapeutic agent for various ailments such as hemorrhagic shock, stroke, heart attack, among others. The present review outlines various (bio)synthetic strategies, pharmacological aspects, clinical overview and potential therapeutic benefits of crocetin and related compounds including TSC. The recent literature focusing on the delivery aspects of these compounds is covered as well to paint the complete picture to the curious reader. Given the potential TSC holds as a first‐in‐class agent, small‐ and/or macromolecular therapeutics based on the core concept of improved oxygen diffusion from blood to the surrounding tissues where it is needed the most, will be developed in future and satisfy the unmet medical need for many diseases and disorders.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been prevalent in the humans since 2019 and has given rise to a pandemic situation. With the discovery and ongoing use of drugs and vaccines against SARS-CoV-2, there is still no surety of its complete suppression of this disease or if there is a need for additional booster doses. There is an urgent need for alternative treatment strategies against COVID-19. Peptides and peptidomimetics have several advantages as therapeutic agents because of their target selectivity, better interactions, and lower toxicity. Minor structural alterations to peptides can help prevent their fast metabolism and provide long-action. This comprehensive review provides an overview of different peptide-based vaccines and therapeutics against SARS-CoV-2. It discusses the design and mechanism of action of the peptide-based vaccines, peptide immunomodulators, anti-inflammatory agents, and peptides as entry inhibitors of SARS-CoV-2. Moreover, the mechanism of action, sequences and current clinical trial studies are also summarized. The review also discusses the future aspects of peptide-based vaccines and therapeutics for COVID-19.
Graphical Abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.