Abstract. Airborne observations of greenhouse gases are a very useful reference for validation of satellite-based column-averaged dry air mole fraction data. However, since the aircraft data are available only up to about 9–13 km altitude, these profiles do not fully represent the depth of the atmosphere observed by satellites and therefore need to be extended synthetically into the stratosphere. In the near future, observations of CO2 and CH4 made from passenger aircraft are expected to be available through the In-Service Aircraft for a Global Observing System (IAGOS) project. In this study, we analyse three different data sources that are available for the stratospheric extension of aircraft profiles by comparing the error introduced by each of them into the total column and provide recommendations regarding the best approach. First, we analyse CH4 fields from two different models of atmospheric composition – the European Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecasting System for Composition (C-IFS) and the TOMCAT/SLIMCAT 3-D chemical transport model. Secondly, we consider scenarios that simulate the effect of using CH4 climatologies such as those based on balloons or satellite limb soundings. Thirdly, we assess the impact of using a priori profiles used in the satellite retrievals for the stratospheric part of the total column. We find that the models considered in this study have a better estimation of the stratospheric CH4 as compared to the climatology-based data and the satellite a priori profiles. Both the C-IFS and TOMCAT models have a bias of about −9 ppb at the locations where tropospheric vertical profiles will be measured by IAGOS. The C-IFS model, however, has a lower random error (6.5 ppb) than TOMCAT (12.8 ppb). These values are well within the minimum desired accuracy and precision of satellite total column XCH4 retrievals (10 and 34 ppb, respectively). In comparison, the a priori profile from the University of Leicester Greenhouse Gases Observing Satellite (GOSAT) Proxy XCH4 retrieval and climatology-based data introduce larger random errors in the total column, being limited in spatial coverage and temporal variability. Furthermore, we find that the bias in the models varies with latitude and season. Therefore, applying appropriate bias correction to the model fields before using them for profile extension is expected to further decrease the error contributed by the stratospheric part of the profile to the total column.
<p><strong>Abstract.</strong> Inaccurate representation of atmospheric processes by transport models is a dominant source of uncertainty in inverse analyses and can lead to large discrepancies in the retrieved flux estimates. We investigate the impact of uncertainties in vertical transport as simulated by atmospheric transport models on fluxes retrieved using vertical profiles from aircraft as an observational constraint. Our numerical experiments are based on synthetic data with realistic spatial and temporal sampling of aircraft measurements. The impact of such uncertainties on the flux retrieved using the ground-based network with those retrieved using the aircraft profiles are compared. We find that the posterior flux retrieved using aircraft profiles is less susceptible to errors in boundary layer height as compared to the ground- based network. This highlights the benefit of utilizing atmospheric observations made onboard aircraft over surface measurements for flux estimation using inverse methods. We further use synthetic vertical profiles of CO<sub>2</sub> in an inversion to estimate the potential of these measurements, which will be made available through the IAGOS (In-Service Aircraft for a Global Observing System) project in future, in constraining the regional carbon budget. Our results show that the regions tropical Africa and temperate Eurasia, that are under constrained by the existing surface based network, will benefit the most from these measurements, the reduction of posterior flux uncertainty being about 7 to 10&#8201;%.</p>
Abstract. Inaccurate representation of atmospheric processes by transport models is a dominant source of uncertainty in inverse analyses and can lead to large discrepancies in the retrieved flux estimates. We investigate the impact of uncertainties in vertical transport as simulated by atmospheric transport models on fluxes retrieved using vertical profiles from aircraft as an observational constraint. Our numerical experiments are based on synthetic data with realistic spatial and temporal sampling of aircraft measurements. The impact of such uncertainties on the flux retrieved using the ground-based network and those retrieved using the aircraft profiles are compared. We find that the posterior flux retrieved using aircraft profiles is less susceptible to errors in boundary layer height, compared to the groundbased network. This finding highlights a benefit of utilizing atmospheric observations made onboard aircraft over surface measurements for flux estimation using inverse methods. We further use synthetic vertical profiles of CO 2 in an inversion to estimate the potential of these measurements, which will be made available through the IAGOS (In-service Aircraft for a Global Observing System) project in the future, in constraining the regional carbon budget. Our results show that the regions of tropical Africa and temperate Eurasia, that are under-constrained by the existing surface-based network, will benefit the most from these measurements, with a reduction of posterior flux uncertainty of about 7 to 10 %.
<p><strong>Abstract.</strong> Airborne observations of greenhouse gases are a very useful reference for validation of satellite-based column-averaged dry air mole fraction data. However, since the aircraft data are available only up to about 9&#8211;13&#8201;km altitude, these profiles do not fully represent the depth of the atmosphere observed by satellites and therefore need to be extended synthetically into the stratosphere. In the near future, observations of CO<sub>2</sub> and CH<sub>4</sub> made from passenger aircraft are expected to be available through the In-Service Aircraft for a Global Observing System (IAGOS) project. In this study, we analyse three different data sources that are available for the stratospheric extension of aircraft profiles by comparing the error introduced by each of them into the total column and provide recommendations regarding the best approach. First, we analyse CH<sub>4</sub> fields from two different models of atmospheric composition &#8211; the European Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecasting System for Composition (C-IFS) and the TOMCAT/SLIMCAT 3-D chemical transport model. Secondly, we consider scenarios that simulate the effect of using CH<sub>4</sub> climatologies such as those based on balloons or satellite limb soundings. Thirdly, we assess the impact of using a-priori profiles used in the satellite retrievals for the stratospheric part of the total column. We find that the models considered in this study have a better estimation of the stratospheric CH<sub>4</sub> as compared to the climatology-based data and the satellite a-priori profiles. Both the C-IFS and TOMCAT models have a bias of about &#8722;9&#8201;ppb at the locations where tropospheric vertical profiles will be measured by IAGOS. The C-IFS model, however, has a lower random error (6.5&#8201;ppb) than TOMCAT (12.8&#8201;ppb). These values are well within the minimum desired accuracy and precision of satellite total column XCH<sub>4</sub> retrievals (10&#8201;ppb and 34&#8201;ppb, respectively). In comparison, the a-priori profile from the University of Leicester Greenhouse Gases Observing Satellite (GOSAT) Proxy XCH<sub>4</sub> retrieval and climatology-based data introduce larger random errors in the total column, being limited in spatial coverage and temporal variability. Furthermore, we find that the bias in the models varies with latitude and season. Therefore, applying appropriate bias correction to the model fields before using them for profile extension is expected to further decrease the error contributed by the stratospheric part of the profile to the total column.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.