Climate change impacts and adaptation related studies in Myanmar are scanty. Therefore this study aims to project future climate scenarios considering two key meteorological parameters-temperature and precipitation -in Belu River Basin in Myanmar. Multi-GCMs approach with ten different GCMs on 10 th to 90 th percentile uncertainty range is studied using time series data of nine meteorological stations. Quantile mapping technique is used to correct the bias in raw GCM data. Bias corrected GCM ensembles are analysed for a wide range of climate scenarios to get the complete picture of climate change pattern for 21 st century. All ten GCM ensembles (four RCP scenarios) indicate that the monsoon to get wetter as well as delayed. August will witness highest amount of rainfall. More rain concentrating over shorter time span suggests likely increase in extreme precipitation events. Only a slight increase is expected on the overall annual precipitation (-1.78~+ 9.14%, range of values from four scenarios). Minimum temperature is found to increase almost twice (+0.64~+5.27C) as compared to maximum temperature (+0.56~+2.82°C) under different scenarios. Summer is the hardest hit season with May and April the most affected months for maximum and minimum temperatures respectively. These results are very useful for further research on assessment of vulnerability and adaptation on water resources and water use sectors in Belu River Basin in Myanmar.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.