Traditional software engineering programming paradigms are mostly object or procedure oriented, driven by deterministic algorithms. With the advent of deep learning and cognitive sciences there is an emerging trend for data-driven programming, creating a shift in the programming paradigm among the software engineering communities. Visualizing and interpreting the execution of a current large scale data-driven software development is challenging. Further, for deep learning development there are many libraries in multiple programming languages such as TensorFlow (Python), CAFFE (C++), Theano (Python), Torch (Lua), and Deeplearning4j (Java), driving a huge need for interoperability across libraries.We propose a model driven development based solution framework, that facilitates intuitive designing of deep learning models in a platform agnostic fashion. This framework could potentially generate library specific code, perform program translation across languages, and debug the training process of a deep learning model from a fault localization and repair perspective.Further we identify open research problems in this emerging domain, and discuss some new software tooling requirements to serve this new age data-driven programming paradigm.
Fooling deep neural networks with adversarial input have exposed a significant vulnerability in the current state-of-the-art systems in multiple domains. Both black-box and white-box approaches have been used to either replicate the model itself or to craft examples which cause the model to fail. In this work, we propose a framework which uses multi-objective evolutionary optimization to perform both targeted and un-targeted blackbox attacks on Automatic Speech Recognition (ASR) systems. We apply this framework on two ASR systems: Deepspeech and Kaldi-ASR, which increases the Word Error Rates (WER) of these systems by upto 980%, indicating the potency of our approach. During both un-targeted and targeted attacks, the adversarial samples maintain a high acoustic similarity of 0.98 and 0.97 with the original audio.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.