Analysis of biological tissue ablation by an ultra-short pulse laser and the corresponding mathematical modeling of ablation are of fundamental importance to the understanding of laser-tissue interaction for advancing surgical application of lasers. The objective of this paper is to analyze the thermal ablated damage zones during irradiation of freshly excised mouse skin tissue samples by a novel approach of using a focused laser beam from an ultra-short pulse laser source. Experiments are performed using Raydiance Desktop Laser having a wavelength of 1552 nm and a pulse width of 1.3 ps. Mouse tissue samples are translated in a direction perpendicular to the laser beam using three-axis automated motion-controlled stages. Scanning of the tissue sample ensures a fresh region of the tissue is irradiated each time. The surface temperature distribution is measured using a thermal imaging camera. It is observed that use of focused beam results in minimal radial heat spread to the surrounding tissue regions. The ablation phenomenon is analytically modeled by the use of two-phase transient heat conduction model. After completion of tissue irradiation experiments, histological studies are performed using frozen sectioning technique to observe morphological changes in tissue samples in response to laser irradiation. The ablation depth measurements obtained using histological studies are compared with the modeling results. A parametric study of various laser parameters such as time-average power, pulse repetition rate, and pulse energy, and as well as irradiation time and scanning velocity is performed to determine the necessary ablation threshold. Analytical modeling results are in very good agreement with experimentally measured ablation depth. The goal of this research is to develop a tool for selection of appropriate laser parameters for precise clean tissue ablation.
Over last two decades lasers have been used for the treatment of subsurface tumors. Various techniques such as Laser-induced Hyperthermia, Laser Interstitial Thermal Therapy (LITT), and Laser Immunotherapy have been developed for the successful ablation of subsurface tumors by different researchers. All these techniques use photo-thermal mechanism for tumor ablation by delivering thermal energy at the tumor site. In all these existing techniques, either continuous wave (CW) or long pulse laser source has been used, which often produces larger heat affected zone as compared to that produced by short pulse laser. Moreover, the delivery of laser beam at the target site is achieved through fiber optic probes which often require perforation of the skin. These drawbacks can be eliminated if a converging laser beam from a short pulse laser source is directly focused at the subsurface location to ablate the tumor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.