With the advent of multi-core systems, GPUs and FPGAs, loop parallelization has become a promising way to speedup program execution. In order to stay up with time, various performance-oriented programming languages provide a multitude of constructs to allow programmers to write parallelizable loops. Correspondingly, researchers have developed techniques to automatically parallelize loops that do not carry dependences across iterations, and/or call pure functions. However, in managed languages with platformindependent runtimes such as Java, it is practically infeasible to perform complex dependence analysis during JIT compilation. In this paper, we propose AutoTornado, a first of its kind static+JIT loop parallelizer for Java programs that parallelizes loops for heterogeneous architectures using TornadoVM (a Graal-based VM that supports insertion of @Parallel constructs for loop parallelization).AutoTornado performs sophisticated dependence and purity analysis of Java programs statically, in the Soot framework, to generate constraints encoding conditions under which a given loop can be parallelized. The generated constraints are then fed to the Z3 theorem prover (which we have integrated with Soot) to annotate canonical for loops that can be parallelized using the @Parallel construct. We have also added runtime support in TornadoVM to use static analysis results for loop parallelization. Our evaluation over several standard parallelization kernels shows that AutoTornado correctly parallelizes 61.3% of manually parallelizable loops, with an efficient static analysis and a near-zero runtime overhead. To the best of our knowledge, AutoTornado is not only the first tool that performs program-analysis based parallelization for a real-world JVM, but also the first to integrate Z3 with Soot for loop parallelization. * Work performed during the author's stay at IIT Mandi, India.† Work performed during the author's stay at IIT Mandi, India.arXiv, May, 20222022.1 int elem_sq(int x) { return x*x; } 2 int array_sq(int[] x) {
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.