Introduction: Non-alcoholic fatty liver disease (NAFLD) incidence has been rapidly increasing, and it has emerged as one of the major diseases of the modern world. NAFLD constitutes a simple fatty liver to chronic non-alcoholic steatohepatitis (NASH), which often leads to liver fibrosis or cirrhosis, a serious health condition with limited treatment options. Many a time, NAFLD progresses to fatal hepatocellular carcinoma (HCC). Nuclear receptors (NRs), such as liver X receptor-α (LXR-α) and closely associated farnesoid X receptor (FXR), are ligand-inducible transcription factors that regulate various metabolism-associated gene expressions and repression and play a major role in controlling the pathophysiology of the human liver. Withaferin A is a multifaceted and potent natural dietary compound with huge beneficial properties and plays a vital role as an anti-inflammatory molecule.Methods:In vivo: Swill albino mice were fed with western diet and sugar water (WDSW) for 12, 16, and 20 weeks with suitable controls. Post necropsy, liver enzymes (AST, ALT, and ALP) and lipid profile were measured by commercially available kits using a semi-auto analyzer in serum samples. Liver histology was assessed using H&E and MTS stains to check the inflammation and fibrosis, respectively, using paraffin-embedded sections and mRNA expressions of these markers were measured using qRT-PCR method. TGF-β1 levels in serum samples were quantified by ELISA. In vitro: Steatosis was induced in HepG2 and Huh7 cells using free fatty acids [Sodium Palmitate (SP) and Oleate (OA)]. After induction, the cells were treated with Withaferin A in dose-dependent manner (1, 2.5, and 5 μM, respectively). In vitro steatosis was confirmed by Oil-Red-O staining. Molecular Docking: Studies were conducted using Auto Dock Vina software to check the binding affinity of Withaferin-A to LXR-α and FXR.Results: We explored the dual receptor-activating nature of Withaferin A using docking studies, which potently improves high-fat diet-induced NAFLD in mice and suppresses diet-induced hepatic inflammation and liver fibrosis via LXR/FXR. Our in vitro studies also indicated that Withaferin A inhibits lipid droplet accumulation in sodium palmitate and oleate-treated HepG2 and Huh7 cells, which may occur through LXR-α and FXR-mediated signaling pathways. Withaferin A is a known inhibitor of NF-κB-mediated inflammation. Intriguingly, both LXR-α and FXR activation inhibits inflammation and fibrosis by negatively regulating NF-κB. Additionally, Withaferin A treatment significantly inhibited TGF-β-induced gene expression, which contributes to reduced hepatic fibrosis.Discussion: Thus, the LXR/ FXR dual receptor activator Withaferin A improves both NAFLD-associated liver inflammation and fibrosis in mouse models and under in vitro conditions, which makes Withaferin A a possibly potent pharmacological and therapeutic agent for the treatment of diet-induced NAFLD.
Hepatocellular carcinoma (HCC) is a complex disease involving altered interactomes of transcripts and proteins. MicroRNAs (miRNAs) are small-noncoding RNAs that can interact with specific gene transcripts and an array of other vital endogenous non-coding RNAs (lncRNAs) that can influence gene expression. Maternally Expressed Gene 3 (MEG3) is an imprinted lncRNA that is reported to be downregulated in HCC (in both cell lines and tumors). Alcohol Dehydrogenase 4 (ADH4) is a well-known prognostic protein biomarker for predicting the survival outcomes of patients with hepatocellular carcinoma whose expression is regulated by miR-664a-3p, which is upregulated in HCC. In this study, we performed a battery of robust and systematic in silico analyses to predicate the possible lncRNA–miRNA interactions between MEG3, miR-664a-3p, and ADH4. miRNA–mRNA and lncRNA–miRNA hybrid structures were primarily obtained, and the minimum free energies (MFEs) for the 3′UTR (Untranslated Regions) of ADH4-miR-664a-3p and the 3′UTR of MEG3-miR-664a-3p interactions were assessed to predict the stability of the obtained RNA heteroduplex hybrids. The hybrid with the least minimum free energy (MFE) was considered to be the most favorable. The MFEs were around −28.1 kcal/mol and −31.3 kCal/mol for the ADH4-miR-664a-3p and MEG3-miR-66a-3p RNA hybrids, respectively. This demonstrated that lncRNA-MEG3 might be a competitive endogenous RNA that acts as a molecular sponge for miR-664a-3p. In summary, our interaction analyses results predict the significance of the MEG3/miR-664a-3p/ADH4 axis, where MEG3 downregulation results in miR-664a-3p overexpression and the subsequential underexpression of ADH4 in HCC, as a novel axis of interest that demands further validation.
Hepatocellular carcinoma (HCC) is one of the most lethal and widespread cancers in the human race. Despite its fatal attributes, there is only a limited understanding of the factors contributing to its pathogenesis at the cellular and molecular levels. Consequently, unraveling new facets involved in HCC progression is elemental for establishing novel targets and biomarkers for this disease. Over the last few years, emerging evidence signifies the role of RNA-induced silencing complex in mediating gene silencing and contributing to HCC. Recent studies also highlight the importance of human telomerase holoenzyme and its complex accessory proteins in the development of HCC. The current review encompasses the multifaceted roles of RNAinduced silencing complex and telomerase activity as well as their synergistic function in HCC.
Hepatocellular carcinoma (HCC) is becoming one of the major health problems, and the leading cause of cancer-related mortality globally. Its multifactorial risk factors remain as paramount challenges to the treatment of this deadly disease. The conventionally known risk factors that trigger HCC include hepatitis C virus (HCV), hepatitis B virus (HBV), excess alcohol consumption, and environmental toxins, such as aflatoxin, aristolochic acid, etc. All these risk factors activate the oncogenic signaling in the liver, and transform the normal liver into an HCC liver. Recently, globalization and the Western sedentary lifestyle have newly emerged as risk factors for HCC, which include obesity, metabolic syndrome, and associated clinical and pathological modalities. In addition, a number of cellular signaling pathways are derailed in HCC, and these pathways, which are altered in HCC, are known to be directly controlled by oncogenes, such as KRAS, BRAF, c-MYC, astrocyte elevated gene-1 (AEG-1), staphylococcal nuclease domain containing 1 (SND1), late SV40 factor (LSF), apoptosis-antagonizing transcription factor (AATF), WNT/β-catenin, TGF-β, etc. All these oncogenes activate the oncogenic signaling in HCC, and suppress the important cellular tumor suppressor protein activity, playing a prominent role in hepatocarcinogenesis, and its development and progression. The present review established a novel interconnected network between all these oncogene-associated proteins, in order to determine its role in deregulating normal cellular signaling pathways, and transforming these into oncogenic signaling. A number of these oncogenes regulate the miRNA-RISC-associated oncogenic signaling, and trigger oncogenic miRNA singling by downregulating various tumor suppressor genes.Therefore, therapeutically targeting these oncogenes and associated proteins would aid in the development of new drugs to treat HCC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.