As a common practice in the data center industry, chassis fans are used to direct air flow independent from neighboring servers. However, these fans are less efficient compared to larger rack level counterparts and also operate at higher sound levels. In this study, a novel approach is proposed whereby the smaller chassis enclosed fans are replaced with an array of larger fans, installed behind the stacked servers that share air flow.As a baseline study for comparison of the current scenario, a CPU dominated 1.5U Open Compute server, with four 60mm fans installed within the server, is characterized experimentally for its flow impedance, air flow rate, effect on die temperature and power consumption for various compute utilization levels. Larger fans with a square frame size of 80mm are carefully selected and individually characterized for their air moving capacity and power consumption. CFD is used to simulate the system of stacked servers and larger fans to obtain its flow characteristics and operating points.The fan power consumption of the larger fans is determined experimentally at these operating points replicated in an air flow bench. Comparing with the base line experiments, this study predicts a significant decrease in fan power consumption, without conceding the flow rate and the static pressure requirements of the server.
Electronic Control Units (ECUs) that control the energy flow through a Hybrid powertrain have played a major role in the success of this technology. Hardware-in-the-Loop (HIL) simulation is a testing process that has proven to be an industry standard for ECU testing and validation. This paper briefly reviews the state-of-the-art technology in HIL testing of Hybrid Electric Vehicles (HEVs). The lessons learned from realworld challenges faced during ECU testing and proven solutions to such problems are also discussed. In addition Rapid Control Prototyping (RCP) related to motor control and controls development, on a hybrid ECU, is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.