Structured data summarization involves generation of natural language summaries from structured input data. In this work, we consider summarizing structured data occurring in the form of tables as they are prevalent across a wide variety of domains. We formulate the standard table summarization problem, which deals with tables conforming to a single predefined schema. To this end, we propose a mixed hierarchical attention based encoderdecoder model which is able to leverage the structure in addition to the content of the tables. Our experiments on the publicly available WEATHERGOV dataset show around 18 BLEU (∼ 30%) improvement over the current state-of-the-art.
Accurate forecasts of infections for localized regions are valuable for policy making and medical capacity planning. Existing compartmental and agent-based models for epidemiological forecasting employ static parameter choices and cannot be readily contextualized, while adaptive solutions focus primarily on the reproduction number. In the current work, we propose a novel model-agnostic Bayesian optimization approach for learning model parameters from observed data that generalizes to multiple application-specific fidelity criteria. Empirical results demonstrate the efficacy of the proposed approach with SEIR-like compartmental models on COVID-19 case forecasting tasks. A city-level forecasting system based on this approach is being used for COVID-19 response in a few highly impacted Indian cities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.