In this work, the deformation behavior of MXene-based polymer composites with bioinspired brick and mortar structures is analyzed. MXene/Polymer nanocomposites are modeled at microscale for bioinspired configurations of nacre-mimetic brick-and-mortar assembly structure. MXenes (brick) with polymer matrix (mortar) are modeled using classical analytical methods and numerical methods based on finite elements (FE). The analytical methods provide less accurate estimation of elastic properties compared to the numerical one. MXene nanocomposite models analyzed with the FE method provide estimates of elastic constants in the same order of magnitude as literature-reported experimental results. Bioinspired design of MXene nanocomposites results in an effective increase of Young’s modulus of the nanocomposite by 25.1% and strength (maximum stress capacity within elastic limits) enhanced by 42.3%. The brick and mortar structure of the nanocomposites leads to an interlocking mechanism between MXene fillers in the polymer matrix, resulting in effective load transfer, good strength, and damage resistance. This is demonstrated in this paper by numerical analysis of MXene nanocomposites subjected to quasi-static loads.
We have investigated the nonlinear optical interaction of uniform and kink states of a nematic and a ferrofluid-doped nematic (ferronematic) liquid crystal with an incident laser field. We find that the transition between the permitted uniform oreintational states of these systems is of first order in the case of nematics, and of second order in the case of ferronematics. In the latter case we also find the phenomenon of reentrance. We find new kink states in a magnetic field with topological winding different from pi in the case of nematics, and 2pi in the case of ferronematics. In ferronematics, due to grain segregation the phase diagrams for uniform and kink states are entirely different. In these systems we find a first or second order structural transformation from a single kink into a pair of kinks. Further, we obtain a rich variety of kink states as the intensity of the laser field is varied.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.