BackgroundThe subcellular localization of a protein is an important aspect of its function. However, the experimental annotation of locations is not even complete for well-studied model organisms. Text mining might aid database curators to add experimental annotations from the scientific literature. Existing extraction methods have difficulties to distinguish relationships between proteins and cellular locations co-mentioned in the same sentence.ResultsLocText was created as a new method to extract protein locations from abstracts and full texts. LocText learned patterns from syntax parse trees and was trained and evaluated on a newly improved LocTextCorpus. Combined with an automatic named-entity recognizer, LocText achieved high precision (P = 86%±4). After completing development, we mined the latest research publications for three organisms: human (Homo sapiens), budding yeast (Saccharomyces cerevisiae), and thale cress (Arabidopsis thaliana). Examining 60 novel, text-mined annotations, we found that 65% (human), 85% (yeast), and 80% (cress) were correct. Of all validated annotations, 40% were completely novel, i.e. did neither appear in the annotations nor the text descriptions of Swiss-Prot.ConclusionsLocText provides a cost-effective, semi-automated workflow to assist database curators in identifying novel protein localization annotations. The annotations suggested through text-mining would be verified by experts to guarantee high-quality standards of manually-curated databases such as Swiss-Prot.Electronic supplementary materialThe online version of this article (doi:10.1186/s12859-018-2021-9) contains supplementary material, which is available to authorized users.
SummaryAnnotators of text corpora and biomedical databases carry out the same labor-intensive task to manually extract structured data from unstructured text. Tasks are needlessly repeated because text corpora are widely scattered. We envision that a linked annotation resource unifying many corpora could be a game changer. Such an open forum will help focus on novel annotations and on optimally benefiting from the energy of many experts. As proof-of-concept, we annotated protein subcellular localization in 100 abstracts cited by UniProtKB. The detailed comparison between our new corpus and the original UniProtKB annotations revealed sustained novel annotations for 42% of the entries (proteins). In a unified linked annotation resource these could immediately extend the utility of text corpora beyond the textmining community. Our example motivates the central idea that linked annotations from text corpora can complement database annotations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.