Graph vertex sampling set selection aims at selecting a set of vertices of a graph such that the space of graph signals that can be reconstructed exactly from those samples alone is maximal. In this context, we propose to extend sampling set selection based on spectral proxies to arbitrary Hilbert spaces of graph signals. Enabling arbitrary inner product of graph signals allows then to better account for vertex importance on the graph for a sampling adapted to the application. We first state how the change of inner product impacts sampling set selection and reconstruction, and then apply it in the context of geometric graphs to highlight how choosing an alternative inner product matrix can help sampling set selection and reconstruction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.