Neutralizing antibodies are likely to play a crucial part in a preventative HIV-1 vaccine. Although efforts to elicit broadly cross-neutralizing (BCN) antibodies by vaccination have been unsuccessful1-3, a minority of individuals naturally develop these antibodies after many years of infection4-7. How such antibodies arise, and the role of viral evolution in shaping these responses, is unknown. Here we show, in two HIV-1–infected individuals who developed BCN antibodies targeting the glycan at Asn332 on the gp120 envelope, that this glycan was absent on the initial infecting virus. However, this BCN epitope evolved within 6 months, through immune escape from earlier strain-specific antibodies that resulted in a shift of a glycan to position 332. Both viruses that lacked the glycan at amino acid 332 were resistant to the Asn332-dependent BCN monoclonal antibody PGT128 (ref. 8), whereas escaped variants that acquired this glycan were sensitive. Analysis of large sequence and neutralization data sets showed the 332 glycan to be significantly underrepresented in transmitted subtype C viruses compared to chronic viruses, with the absence of this glycan corresponding with resistance to PGT128. These findings highlight the dynamic interplay between early antibodies and viral escape in driving the evolution of conserved BCN antibody epitopes.
Cholesterol-rich lipid raft microdomains in the plasma membrane are considered to play a major role in the enveloped virus lifecycle. However, the functional role of cholesterol in assembly, infectivity and stability of respiratory RNA viruses is not fully understood. We previously reported that depletion of cellular cholesterol by cholesterol-reducing agents decreased production of human parainfluenza virus type 1 (hPIV1) particles by inhibiting virus assembly. In this study, we analyzed the role of cholesterol on influenza A virus (IAV) and respiratory syncytial virus (RSV) production. Unlike hPIV1, treatment of human airway cells with the agents did not decrease virus particle production. However, the released virions were less homogeneous in density and unstable. Addition of exogenous cholesterol to the released virions restored virus stability and infectivity. Collectively, these data indicate a critical role of cholesterol in maintaining IAV and RSV membrane structure that is essential for sustaining viral stability and infectivity.
Many enveloped RNA viruses utilize lipid rafts for the assembly of progeny virions, but the role of cholesterol, a major component of rafts, on paramyxovirus budding and virion formation is controversial. In this study, we analyzed the effects of FDA-approved cholesterol-reducing agents, gemfibrozil and lovastatin, on raft formation and assembly of human parainfluenza virus type 1 (hPIV1) and Sendai virus (SeV). Treatment of the human airway epithelial A549 cells with the agents, especially when combined, significantly decreased production of infectious hPIV1 and SeV. Mechanistic analysis indicated that depletion of cellular cholesterol reduced cell surface accumulation of envelope glycoproteins and association of viral matrix and nucleocapsids with raft membrane, which resulted in impaired virus budding and release from the cells. These results indicate that cellular cholesterol is required for assembly and formation of type 1 parainfluenza viruses and suggest that cholesterol could be an attractive target for antiviral agents against hPIV1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.