Document classification is one of the most critical steps in the document analysis pipeline. There are two types of approaches for document classification, known as image-based and multimodal approaches. Image-based document classification approaches are solely based on the inherent visual cues of the document images. In contrast, the multimodal approach co-learns the visual and textual features, and it has proved to be more effective. Nonetheless, these approaches require a huge amount of data. This paper presents a novel approach for document classification that works with a small amount of data and outperforms other approaches. The proposed approach incorporates a hierarchical attention network (HAN) for the textual stream and the EfficientNet-B0 for the image stream. The hierarchical attention network in the textual stream uses dynamic word embedding through fine-tuned BERT. HAN incorporates both the word level and sentence level features. While earlier approaches rely on training on a large corpus (RVL-CDIP), we show that our approach works with a small amount of data (Tobacco-3482). To this end, we trained the neural network at Tobacco-3482 from scratch. Therefore, we outperform the state-of-the-art by obtaining an accuracy of 90.3%. This results in a relative error reduction rate of 7.9%.
Document classification is one of the most critical steps in the document analysis pipeline. There are two types of approaches for document classification, known as image-based and multimodal approaches. The image-based document classification approaches are solely based on the inherent visual cues of the document images. In contrast, the multimodal approach co-learns the visual and textual features, and it has proved to be more effective. Nonetheless, these approaches require a huge amount of data. This paper presents a novel approach for document classification that works with a small amount of data and outperforms other approaches. The proposed approach incorporates a hierarchical attention network(HAN) for the textual stream and the EfficientNet-B0 for the image stream. The hierarchical attention network in the textual stream uses the dynamic word embedding through fine-tuned BERT. HAN incorporates both the word level and sentence level features. While the earlier approaches rely on training on a large corpus (RVL-CDIP), we show that our approach works with a small amount of data (Tobacco-3482). To this end, we trained the neural network at Tobacco-3428 from scratch. Thereby, we outperform state-of-the-art by obtaining an accuracy of 90.3%. This results in a relative error reduction rate of 7.9%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.