Cancer is a problematic global health issue with an extremely high fatality rate throughout the world. The application of various machine learning techniques that have appeared in the field of cancer diagnosis in recent years has provided meaningful insights into efficient and precise treatment decision-making. Due to rapid advancements in sequencing technologies, the detection of cancer based on gene expression data has improved over the years. Different types of cancer affect different parts of the body in different ways. Cancer that affects the mouth, lip, and upper throat is known as oral cancer, which is the sixth most prevalent form of cancer worldwide. India, Bangladesh, China, the United States, and Pakistan are the top five countries with the highest rates of oral cavity disease and lip cancer. The major causes of oral cancer are excessive use of tobacco and cigarette smoking. Many people’s lives can be saved if oral cancer (OC) can be detected early. Early identification and diagnosis could assist doctors in providing better patient care and effective treatment. OC screening may advance with the implementation of artificial intelligence (AI) techniques. AI can provide assistance to the oncology sector by accurately analyzing a large dataset from several imaging modalities. This review deals with the implementation of AI during the early stages of cancer for the proper detection and treatment of OC. Furthermore, performance evaluations of several DL and ML models have been carried out to show that the DL model can overcome the difficult challenges associated with early cancerous lesions in the mouth. For this review, we have followed the rules recommended for the extension of scoping reviews and meta-analyses (PRISMA-ScR). Examining the reference lists for the chosen articles helped us gather more details on the subject. Additionally, we discussed AI’s drawbacks and its potential use in research on oral cancer. There are methods for reducing risk factors, such as reducing the use of tobacco and alcohol, as well as immunization against HPV infection to avoid oral cancer, or to lessen the burden of the disease. Additionally, officious methods for preventing oral diseases include training programs for doctors and patients as well as facilitating early diagnosis via screening high-risk populations for the disease.
Parkinson’s disease (PD) is a devastating neurological disease that cannot be identified with traditional plasma experiments, necessitating the development of a faster, less expensive diagnostic instrument. Due to the difficulty of quantifying PD in the past, doctors have tended to focus on some signs while ignoring others, primarily relying on an intuitive assessment scale because of the disease’s characteristics, which include loss of motor control and speech that can be utilized to detect and diagnose this disease. It is an illness that impacts both motion and non-motion functions. It takes years to develop and has a wide range of clinical symptoms and prognoses. Parkinson’s patients commonly display non-motor symptoms such as sleep problems, neurocognitive ailments, and cognitive impairment long before the diagnosis, even though scientists have been working to develop designs for diagnosing and categorizing the disease, only noticeable defects such as movement patterns, speech, or writing skills are offered in this paper. This article provides a thorough analysis of several AI-based ML and DL techniques used to diagnose PD and their influence on developing additional research directions. It follows the guidelines of Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR). This review also examines the current state of PD diagnosis and the potential applications of data-driven AI technology. It ends with a discussion of future developments, which aids in filling critical gaps in the current Parkinson’s study.
With information systems worldwide being attacked daily, analogies from traditional warfare are apt, and deception tactics have historically proven effective as both a strategy and a technique for Defense. Defensive Deception includes thinking like an attacker and determining the best strategy to counter common attack strategies. Defensive Deception tactics are beneficial at introducing uncertainty for adversaries, increasing their learning costs, and, as a result, lowering the likelihood of successful attacks. In cybersecurity, honeypots and honeytokens and camouflaging and moving target defense commonly employ Defensive Deception tactics. For a variety of purposes, deceptive and anti-deceptive technologies have been created. However, there is a critical need for a broad, comprehensive and quantitative framework that can help us deploy advanced deception technologies. Computational intelligence provides an appropriate set of tools for creating advanced deception frameworks. Computational intelligence comprises two significant families of artificial intelligence technologies: deep learning and machine learning. These strategies can be used in various situations in Defensive Deception technologies. This survey focuses on Defensive Deception tactics deployed using the help of deep learning and machine learning algorithms. Prior work has yielded insights, lessons, and limitations presented in this study. It culminates with a discussion about future directions, which helps address the important gaps in present Defensive Deception research.
In living organisms, the heart plays an important function. Diagnosis and prediction of heart diseases necessitates greater precision, perfection, and accuracy because even a minor error will result in fatigue or death. There are multiple death cases related to the heart, and the number is growing rapidly day by day. The scope of this study is restricted to discovering associations in CHD data using three super- vised learning techniques: Logistic Regression, K-Nearest Neighbour, and Random Forest, in order to improve the prediction rate. As a result, this paper conducts a comparative analysis of the results of various machine learning algorithms. The trial results verify that Logistic Regression algorithm has achieved the highest accuracy of 89% com- pared to other ML algorithmsimplemented. Keywords: Machine Learning, Logistic Regression, K-Nearest Neighbour, Random Forest, Python, Heart Disease, Prediction model, Healthcare
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.