The present study demonstrates apoptosis-inducing potential and mechanism of action of Tribulus terristris alkaloid extract in Jurkat E6-1 cancer cell line. Liquid Chromatography-Mass Spectrometry and High Resolution-Mass Spectrometry analysis identified the presence of four N-feruloyltyramine derivatives, namely trans-N-feruloyl-3-hydroxytyramine (1), trans-N-coumaroyltyramine (2), trans-N-feruloyltyramine (3) and trans-N-feruloyl-3-ethoxytyramine (4) in the alkaloid extract. Compounds 2 and 3 have not been yet reported in the alkaloid extract of T. terristris. In silico analysis revealed therapeutic potential of N-feruloyltyramine derivatives and strong binding efficiency to both chains of Tumor Necrosis Factor Receptor 1. Treatment of alkaloids extract to Jurkat E6-1 clone induced dose-dependent cytotoxicity (LC50 140.4 μg mL−1). Jurkat cells treated with alkaloids extract at sub-lethal concentration showed DNA fragmentation, enhancement in caspase-3 activity and phosphatidylserine translocation (apoptosis indicator) compared to control cells. Gene expression analysis using Human Apoptosis RT2 Profiler PCR Array analysis upon alkaloid treatment was found to significantly alter expression of critical genes such as TNFR1, FADD, AIFM, CASP8, TP53, DFFA and NFKB1. These genes are predicted to mediate apoptotic cell death via both intrinsic and extrinsic apoptosis pathway. In summary, we report the identification of new N-feruloyltyramine derivatives from alkaloid extract of T. terristris fruit with probable anti-leukemic and pharmacological potential.
Basaiyye et al.: Cytotoxic Nature of Antioxidant Alkaloid Extracts of Tribulus terrestris L. FruitsThe present communication dealt with cytotoxic and free radical scavenging potential of tertiary and quaternary alkaloid extracts of Tribulus terrestris fruits. Tertiary and quaternary alkaloid extracts were found to be cytotoxic to leukemic cells (Jurkat E6-1) with LC 50 values of 100 and 42 µg/ml, respectively. Compared to the control, reactive oxygen species and reactive nitrogen species were significantly reduced in the cells treated with lower concentrations of tertiary and quaternary alkaloid extracts. Cells treated with tertiary alkaloid extract demonstrated significantly elevated levels of peroxidise, catalase and superoxide dismutaselike activities, whereas cells treated with quaternary alkaloid extracts showed insignificant elevations of the tested enzyme activities, compared to the control cells. The antioxidant activity of tertiary alkaloid (100 µg/ml) extract was 46.78 and 14.92 µg/ml of ascorbic acid equivalent as estimated in ferric reducing antioxidant potential and total antioxidant assays. Quaternary alkaloid extract displayed an IC 50 value of 159 µg/ml in the nitric oxide mitigation assay. Cells treated with quaternary alkaloid extracts showed 1.4-fold increase in superoxide dismutase-like activity compared to the control cells. These results suggest that tertiary and quaternary alkaloid extracts possessed cytotoxic and free radical scavenging potential against leukemic cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.