Purpose Our research sought to describe barriers to mammography screening among a sample of predominantly Black women in metropolitan Atlanta, Georgia. Methods The Pink Panel project convened community leaders from faith-based institutions to administer an offline survey to women via convenience sampling at fourteen churches in Atlanta in late 2019 and early 2020. With the COVID-19 pandemic, the research team switched to an online survey. The survey included seven questions about breast cancer awareness, barriers to breast cancer screening, and screening status. We used residence information to attain the 9-digit zip code to link to the Area Deprivation Index at the Census Block Group neighborhood level. We report results as descriptive statistics of the barriers to mammography screening. Results The 643 women represented 21 counties in Georgia, predominantly from metropolitan Atlanta, and 86% identified as Black. Among women aged 40 and older, 90% have ever had a mammogram. Among all women, 79% have ever had a mammogram, and 86% indicated that they would get a mammogram if offered in their neighborhood. The top barriers to mammography screening were lack of health insurance and high cost. Barriers to mammography screening did not differ substantially by Area Deprivation Index. Conclusion Among metropolitan Atlanta women aged 40+ , nearly all reported ever having a mammogram. However, addressing the barriers, including lack of health insurance and high cost, that women reported may further improve mammography screening rates.
Background: Neoadjuvant chemotherapy (NAC) is the standard treatment for early-stage triple negative breast cancer (TNBC). The primary endpoint of NAC is a pathological complete response (pCR). NAC results in pCR in only 30% to 40% of TNBC patients. Tumor-infiltrating lymphocytes (TILs), Ki67 and phosphohistone H3 (pH3) are a few known biomarkers to predict NAC response. Currently, systematic evaluation of the combined value of these biomarkers in predicting NAC response is lacking. In this study, the predictive value of markers derived from H&E and IHC stained biopsy tissue was comprehensively evaluated using a supervised machine learning (ML)-based approach. Identifying predictive biomarkers could help guide therapeutic decisions by enabling precise stratification of TNBC patients into responders and partial or non-responders. Methods: Serial sections from core needle biopsies (n=76) were stained with H&E, and immunohistochemically for the Ki67 and pH3 markers, followed by whole slide image (WSI) generation. The resulting WSI triplets were co-registered with H&E WSIs serving as the reference. Separate mask region-based CNN (MRCNN) models were trained with annotated H&E, Ki67 and pH3 images for detecting tumor cells, stromal and intratumoral TILs (sTILs and tTILs), Ki67+, and pH3+ cells. Top image patches with a high density of cells of interest were identified as hotspots. Best classifiers for NAC response prediction were identified by training multiple ML models, and evaluating their performance by accuracy, area under curve, and confusion matrix analyses. Results: Highest prediction accuracy was achieved when hotspot regions were identified by tTIL counts and each hotspot was represented by measures of tTILs, sTILs, tumor cells, Ki67+, and pH3+ features. Regardless of the hotspot selection metric, a complementary use of multiple histological features (tTILs, sTILs) and molecular biomarkers (Ki67 and pH3) resulted in top ranked performance at the patient level. Conclusions: Overall, our results emphasize that prediction models for NAC response should be based on biomarkers in combination rather than in isolation. Our study provides compelling evidence to support the use of ML-based models to predict NAC response in patients with TNBC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.