Neck pain is a common condition with several proposed biomechanical contributing factors. Thoracic spine dysfunction is hypothesized as one of the predisposing factors, which necessitates the need to explore the contribution of thoracic posture and mobility toward neck pain. Accordingly, the present work aimed to review the existing literature investigating the presence of thoracic spine dysfunction in individuals with neck pain. A literature search was conducted in the three electronic databases of PubMed, CINAHL, and Web of Science. Studies published between 1990 and 2017 were considered. After reviewing the abstracts, two authors independently scrutinized the full-text documents for their relevance. The initial search yielded 2,167 articles, of which nine studies involving comparisons of neck pain patients and healthy controls were identified for the review. Increased thoracic kyphosis was positively correlated with the presence of forward head posture but not uniformly associated with neck pain intensity and disability. Thoracic mobility was reduced in the neck pain population, and the role of thoracic kyphosis as a risk factor for pain development could not be confirmed. Thus, an association exists between thoracic kyphosis and postural alteration in the cervical spine. The review favors the inclusion of thoracic spine assessment and treatment in mechanical neck pain patients. Further studies are needed to investigate the cause-effect relationship between thoracic posture and cervical dysfunction.
Background Cervicothoracic (CT) junction hypomobility has been proposed as a contributing factor for neck pain. However, there are limited studies that compared the effect of CT junction mobilization against an effective intervention in neck pain. Thoracic spine manipulation is a nonspecific intervention for neck pain where remote spinal segments are treated based on the concept of regional interdependence. The effectiveness of segment-specific spinal mobilization in the cervical spine has been researched in the last few years, and no definite conclusions could be made from the previous studies. The above reasons warrant the investigation of the effects of a specific CT junction mobilization against a nonspecific thoracic manipulation intervention in neck pain. The present study aims to compare the immediate effects of C7-T1 Maitland mobilization with thoracic manipulation in individuals with mechanical neck pain presenting with CT junction dysfunction specifically. Methods A randomized clinical trial is conducted where participants with complaints of mechanical neck pain and CT junction dysfunction randomly assigned to either C7-T1 level Maitland mobilization group or mid-thoracic (T3-T6) manipulation group (active control group). In both the groups, the post graduate student (SJ) pursuing Master’s in orthopedic physiotherapy delivered the intervention. The outcomes of cervical flexion, extension, side flexion & rotation range of motion (ROM) were measured before & after the intervention with a cervical range of motion (CROM) device. Self-reported pain intensity was measured with the numerical pain rating scale (NPRS). The post-intervention between-group comparison was performed using a one-way ANCOVA test. Results Forty-two participants with mean age CT junction group: 35.14 ± 10.13 and Thoracic manipulation group: 38.47 ± 11.47 were recruited for the study. No significant differences in the post-intervention baseline adjusted outcomes of cervical ROM & self-reported pain intensity were identified between the groups after the treatment (p = 0.08, 0.95, 0.01, 0.39, 0.29, 0.27for flexion, extension, bilateral lateral flexion & rotations respectively) & neck pain intensity (p = 0.68). However, within-group, pre, and post comparison showed significant improvements in cervical ROM and pain in both groups. Conclusion This preliminary study identified that CT junction mobilization is not superior to thoracic manipulation on the outcomes of cervical ROM and neck pain when level-specific CT junction mobilization was compared with remote mid-thoracic manipulation in individuals with mechanical neck pain and CT junction dysfunction. Trial registration CTRI: 2018/04/013088, Registered 6 April 2018, http://ctri.nic.in/Clinicaltrials/pmaindet2.php?trialid=24418
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.