Accurate demand forecasting plays a critical role in most furniture businesses’ operational, tactical, and strategic decisions, as the demand in the furniture business is considered seasonal and becomes more complex in crises. In this work, a neural network model using the Long Short-Term Memory (LSTM) method was developed to forecast the demand for specific product groups. LSTM is a leading deep learning model for time series prediction, particularly seasonal, multi-item, and non-linear situations. The developed model was used to predict the demand based on old data before the Covid-19 pandemic and recent data of the first months of the pandemic as a fast response to the crisis. In addition, a comparison study was conducted between the developed model and the traditional planning inventory used by furniture businesses that provided us with the data. The results showed that the Covid-19 pandemic significantly impacted demand forecasting. Also, the fast response to Covid-19 pandemic has slightly increased the model performance. Finally, the comparison study demonstrated that our model is robust and better than the traditional demand forecasting method. Therefore, the developed model may help the business improve inventory and production planning to create a more flexible supply chain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.