Designing systems with large magnetic anisotropy is critical to realize nanoscopic magnets. Thus far, the magnetic anisotropy energy per atom in single-molecule magnets and ferromagnetic films remains typically one to two orders of magnitude below the theoretical limit imposed by the atomic spin-orbit interaction. We realized the maximum magnetic anisotropy for a 3d transition metal atom by coordinating a single Co atom to the O site of an MgO(100) surface. Scanning tunneling spectroscopy reveals a record-high zero-field splitting of 58 millielectron volts as well as slow relaxation of the Co atom's magnetization. This striking behavior originates from the dominating axial ligand field at the O adsorption site, which leads to out-of-plane uniaxial anisotropy while preserving the gas-phase orbital moment of Co, as observed with x-ray magnetic circular dichroism.
We report on the magnetic properties of individual Fe atoms deposited on MgO(100) thin films probed by x-ray magnetic circular dichroism and scanning tunneling spectroscopy. We show that the Fe atoms have strong perpendicular magnetic anisotropy with a zero-field splitting of 14.0 AE 0.3 meV=atom. This is a factor of 10 larger than the interface anisotropy of epitaxial Fe layers on MgO and the largest value reported for Fe atoms adsorbed on surfaces. The interplay between the ligand field at the O adsorption sites and spin-orbit coupling is analyzed by density functional theory and multiplet calculations, providing a comprehensive model of the magnetic properties of Fe atoms in a low-symmetry bonding environment.
Zintl phases are promising thermoelectric materials because they are composed of both ionic and covalent bonding, which can be independently tuned. An efficient thermoelectric material would have regions of the structure composed of a high-mobility compound semiconductor that provides the "electron−crystal" electronic structure, interwoven (on the atomic scale) with a phonon transport inhibiting structure to act as the "phonon−glass". The phonon−glass region would benefit from disorder and therefore would be ideal to house dopants without disrupting the electron−crystal region. The solid solution of the Zintl phase, Yb 2−x Eu x CdSb 2 , presents such an optimal structure, and here we characterize its thermoelectric properties above room temperature. Thermoelectric property measurements from 348 to 523 K show high Seebeck values (maximum of ∼269 μV/K at 523 K) with exceptionally low thermal conductivity (minimum ∼0.26 W/m K at 473 K) measured via laser flash analysis. Speed of sound data provide additional support for the low thermal conductivity. Density functional theory (DFT) was employed to determine the electronic structure and transport properties of Yb 2 CdSb 2 and YbEuCdSb 2 . Lanthanide compounds display an f-band well below (∼2 eV) the gap. This energy separation implies that f-orbitals are a silent player in thermoelectric properties; however, we find that some hybridization extends to the bottom of the gap and somewhat renormalizes hole carrier properties. Changes in the carrier concentration related to the introduction of Eu lead to higher resistivity. A zT of ∼0.67 at 523 K is demonstrated for Yb 1.6 Eu 0.4 CdSb 2 due to its high Seebeck, moderate electrical resistivity, and very low thermal conductivity.
The reaction between molecular oxygen and two nitric oxide(II) molecules is studied with high-level ab initio wave function methods, including geometry optimizations with coupled cluster (CCSD(T,full)/cc-pCVTZ) and complete active space with second order perturbation theory levels (CASPT2/cc-pVDZ). The energy at the critical points was refined by calculations at the CCSD(T,full)/aug-cc-pCVTZ level. The controversies found in the previous theoretical studies are critically discussed and resolved. The best estimate of the activation energy is 6.47 kJ/mol.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.